Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles tend to focus on sweat removal and pay little attention to the basic thermoregulation function of sweat, showing limited evaporation ability and cooling efficiency in moderate/profuse perspiration scenarios. Here, we propose an integrated cooling (i-Cool) textile with unique functional structure design for personal perspiration management. By integrating heat conductive pathways and water transport channels decently, i-Cool exhibits enhanced evaporation ability and high sweat evaporative cooling efficiency, not merely liquid sweat wicking function. In the steady-state evaporation test, compared to cotton, up to over 100% reduction in water mass gain ratio, and 3 times higher skin power density increment for every unit of sweat evaporation are demonstrated. Besides, i-Cool shows about 3 °C cooling effect with greatly reduced sweat consumption than cotton in the artificial sweating skin test. The practical application feasibility of i-Cool design principles is well validated based on commercial fabrics. Owing to its exceptional personal perspiration management performance, we expect the i-Cool concept can provide promising design guidelines for next-generation perspiration management textiles.
The frequency-dependent capacitance of low-temperature solution-processed metal oxide (MO) dielectrics typically yields unreliable and unstable thin-film transistor (TFT) performance metrics, which hinders the development of next-generation roll-to-roll MO electronics and obscures intercomparisons between processing methodologies. Here, capacitance values stable over a wide frequency range are achieved in low-temperature combustion-synthesized aluminum oxide (AlO x ) dielectric films by fluoride doping. For an optimal F incorporation of ∼3.7 atomic % F, the F:AlO x film capacitance of 166 ± 11 nF/cm2 is stable over a 10–1–104 Hz frequency range, far more stable than that of neat AlO x films (capacitance = 336 ± 201 nF/cm2) which falls from 781 ± 85 nF/cm2 to 104 ± 4 nF/cm2 over this frequency range. Importantly, both n-type/inorganic and p-type/organic TFTs exhibit reliable electrical characteristics with minimum hysteresis when employing the F:AlO x dielectric with ∼3.7 atomic % F. Systematic characterization of film microstructural/compositional and electronic/dielectric properties by X-ray photoelectron spectroscopy, time-of-fight secondary ion mass spectrometry, cross-section transmission electron microscopy, solid-state nuclear magnetic resonance, and UV–vis absorption spectroscopy reveal that fluoride doping generates AlOF, which strongly reduces the mobile hydrogen content, suppressing polarization mechanisms at low frequencies. Thus, this work provides a broadly applicable anion doping strategy for the realization of high-performance solution-processed metal oxide dielectrics for both organic and inorganic electronics applications.
The filtered interphase heat-transfer coefficient for coarse-grid simulations of gas-solid flows can be obtained via a correction (Q) to its microscopic counterpart. The numerical results show that a good linear correlation between Q and the subgrid drift temperature exists at various filtered solid volume fractions, filter sizes and Reynolds numbers, where the subgrid drift temperature is the correlation between the fluctuating temperature of the gas phase and the fluctuation of the gas volume fraction. Since Q can be determined solely by one subgrid quantity, closure for Q is directly pursued. It is found that Q correlates surprisingly well with the product of the filtered solid volume fraction and the filtered temperature difference between the two phases normalized by the filtered heat transfer at a larger scale than the considered coarse grid. A fitting correlation is formulated based on this observation, and its predictability is evaluated in an a priori test.
We demonstrate capillary fed porous copper structures capable of dissipating over 1200 W cm À2 in boiling with water as the working fluid. Demonstrated superheats for this structure are dramatically lower than those previously reported at these high heat fluxes and are extremely insensitive to heat input. We show superheats of less than 10 K at maximum dissipation and varying less than 5 K over input heat flux ranges of 1000 W cm À2. Fabrication of the porous copper layers using electrodeposition around a sacrificial template allows fine control of both microstructure and bulk geometry, producing structures less than 40 lm thick with active region lateral dimensions of 2 mm  0.3 mm. The active region is volumetrically Joule heated by passing an electric current through the porous copper bulk material. We analyze the heat transfer performance of the structures and suggest a strong influence of pore size on superheat. We compare performance of the current structure to existing wick structures. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.