We compute the symbol of the first two-loop amplitudes in planar N ¼ 4 SYM with algebraic letters, the eight-point Next to Maximally Helicity Violating (NMHV) amplitude (or the dual octagon Wilson loops). We show how to applyQ equations of [S. Caron-Huot and S. He, J. High Energy Phys. 07 (2012) 174] for computing the differential of two-loop n-point NMHV amplitudes and present the result for n ¼ 8 explicitly. The symbol alphabet for octagon consists of 180 independent rational letters and 18 algebraic ones involving Gram-determinant square roots. We comment on all-loop predictions for final entries and aspects of the result valid for all multiplicities.
Inspired by the idea of viewing amplitudes in N = 4 SYM as differential forms on momentum twistor space, we introduce differential forms on the space of spinor variables, which combine helicity amplitudes in any four-dimensional gauge theory as a single object. In this note we focus on such differential forms in N = 4 SYM, which can also be thought of as "bosonizing" superamplitudes in non-chiral superspace. Remarkably all tree-level amplitudes in N = 4 SYM combine to a d log form in spinor variables, which is given by pushforward of canonical forms of Grassmannian cells. The tree forms can also be obtained using BCFW or inverse-soft construction, and we present all-multiplicity expression for MHV and NMHV forms to illustrate their simplicity. Similarly all-loop planar integrands can be naturally written as d log forms in the Grassmannian/on-shelldiagram picture, and we expect the same to hold beyond the planar limit. Just as the form in momentum twistor space reveals underlying positive geometry of the amplituhedron, the form in terms of spinor variables strongly suggests an "amplituhedron in momentum space". We initiate the study of its geometry by connecting it to the moduli space of Witten's twistor-string theory, which provides a pushforward formula for tree forms in N = 4 SYM.
We study the symbol and the alphabet for two-loop NMHV amplitudes in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills from the $$ \overline{Q} $$ Q ¯ equations, which provide a first-principle method for computing multi-loop amplitudes. Starting from one-loop N2MHV ratio functions, we explain in detail how to use $$ \overline{Q} $$ Q ¯ equations to obtain the total differential of two-loop n-point NMHV amplitudes, whose symbol contains letters that are algebraic functions of kinematics for n ≥ 8. We present explicit formula with nice patterns for the part of the symbol involving algebraic letters for all multiplicities, and we find 17 − 2m multiplicative-independent letters for a given square root of Gram determinant, with 0 ≤ m ≤ 4 depending on the number of particles involved in the square root. We also observe that these algebraic letters can be found as poles of one-loop four-mass leading singularities with MHV or NMHV trees. As a byproduct of our algebraic results, we find a large class of components of two-loop NMHV, which can be written as differences of two double-pentagon integrals, particularly simple and free of square roots. As an example, we present the complete symbol for n = 9 whose alphabet contains 59 × 9 rational letters, in addition to the 11 × 9 independent algebraic ones. We also give all-loop NMHV last-entry conditions for all multiplicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.