The development of industry is inseparable from the support of steel materials, and the modern industry has increasingly high requirements for the quality of steel plates. But the process of steel plate production produces many types of defects, such as roll marks, scratches, and scars. These defects will directly affect the quality and performance of the steel plate, so it is necessary to effectively detect them. Steel plate surface defects are characterized by their types, shape, and size: the same defect can have different morphologies, and similarities can exist between different defects. In this paper, industrial steel plate surface defect samples are analyzed, and a sample set is established by screening the collected defect images. Then, annotation and classification are performed. A multilayer feature extraction framework is developed in experiments to train a neural network on the sample set of defects. To address the problems of low automation, slow detection speed, and low accuracy of the traditional defect detection methods, the attention graph convolution network (AGCN) is investigated in this paper. Firstly, faster R-CNN is used as the basic network model for defect detection, and the visual features are jointly refined by combining attention mechanism and graph convolution neural network. The latter network enriches the contextual information in the visual features of steel plates and explores the semantic association between vision and defect types for different kinds of defects using the attention mechanism to achieve intelligent detection of defects, thus enabling our method to meet the practical needs of steel plate production.
In order to improve the effect of real-time defect recognition in steel plate online production, this paper studies the method of steel plate defect recognition based on the deep neural network algorithm based on space-time constraints. Moreover, this paper improves the space-time constraint algorithm, optimizes the encryption structure of the traditional ABE scheme, and obtains a neural network feature recognition method based on space-time constraints. In order to process the massive image data stream generated instantaneously and ensure the real-time performance, accuracy, and stability of the detection system, this paper constructs a distributed parallel computing system structure based on the client/server (CC/S) model to obtain an intelligent recognition system. Through experimental research, it can be seen that the deep neural network recognition system based on space-time constraints proposed in this paper has a good effect in the recognition of steel plate defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.