In this study, we describe a highly sensitive and reusable silicon nanowire field-effect transistor for the detection of protein-protein interactions. This reusable device was made possible by the reversible association of glutathione S-transferase-tagged calmodulin with a glutathione modified transistor. The calmodulin-modified transistor exhibited selective electrical responses to Ca 2þ (≥1 μM) and purified cardiac troponin I (∼7 nM); the change in conductivity displayed a linear dependence on the concentration of troponin I in a range from 10 nM to 1 μM. These results are consistent with the previously reported concentration range in which the dissociation constant for the troponin I-calmodulin complex was determined. The minimum concentration of Ca 2þ required to activate calmodulin was determined to be 1 μM. We have also successfully demonstrated that the N-type Ca 2þ channels, expressed by cultured 293T cells, can be recognized specifically by the calmodulin-modified nanowire transistor. This sensitive nanowire transistor can serve as a high-throughput biosensor and can also substitute for immunoprecipitation methods used in the identification of interacting proteins.calcium ion | glutathione S-transfrease | N-type calcium channel | silicon nanowire field-effect transistor
An essential issue in graphene nanoelectronics is to engineer the carrier type and density and still preserve the unique band structure of graphene. We report the realization of high-quality graphene p-n junctions by noncovalent chemical functionalization. A generic scheme for the graphene p-n junction fabrication is established by combining the resist-free approach and spatially selective chemical modification process. The effectiveness of the chemical functionalization is systematically confirmed by surface topography and potential measurements, spatially resolved Raman spectroscopic imaging, and transport/magnetotransport measurements. The transport characteristics of graphene p-n junctions are presented with observations of high carrier mobilities, Fermi energy difference, and distinct quantum Hall plateaus. The chemical functionalization of graphene p-n junctions demonstrated in this study is believed to be a feasible scheme for modulating the doping level in graphene for future graphene-based nanoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.