Abstract-Travel time is a fundamental measure in transportation. Accurate travel-time prediction also is crucial to the development of intelligent transportation systems and advanced traveler information systems. In this paper, we apply support vector regression (SVR) for travel-time prediction and compare its results to other baseline travel-time prediction methods using real highway traffic data. Since support vector machines have greater generalization ability and guarantee global minima for given training data, it is believed that SVR will perform well for time series analysis. Compared to other baseline predictors, our results show that the SVR predictor can significantly reduce both relative mean errors and root-mean-squared errors of predicted travel times. We demonstrate the feasibility of applying SVR in travel-time prediction and prove that SVR is applicable and performs well for traffic data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.