In this study, pattern recognition methods are applied to a five-degrees-of-freedom robot arm that can key in words on a touch screen for an automatic smartphone test. The proposed system can recognize Chinese characters and Mandarin phonetic symbols. The mechanical arm is able to perform corresponding movements and edit words on the screen. Pattern matching is based on the Red-Green-Blue (RGB) RGB color space and is transformed to binary images for higher correct rate and geometric matching. A web camera is utilized to capture patterns on the tested smartphone screen. The proposed control scheme uses a support vector machine with a histogram of oriented gradient classifier to recognize Chinese Mandarin phonetic symbols and provide correct coordinates during the control process. The control scheme also calculates joint angles of the robot arm during the movement using the Denavit–Hartenberg parameters (D-H) model and fuzzy logic system. Fuzzy theory is applied to use the position error between the robot arm and target location then resend the command to adjust the arm’s position. From the experiments, the proposed control scheme can control the robot to press desired buttons on the tested smartphone. For Chinese Mandarin phonetic symbols, recognition accuracy of the test system can reach 90 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.