Exposure to air pollutants may elevate the injury severity scores (ISSs) for road traffic injuries (RTIs). This multicenter cross-sectional study aimed to investigate the associations between air pollution, weather conditions, and RTI severity. This retrospective study was performed in Taiwan in 2018. The location of each road traffic accident (RTA) was used to determine the nearest air quality monitoring and weather station, and the time of each RTA was matched to the corresponding hourly air pollutant concentration and weather factors. Five multiple logistic regression models were used to compute the risk of sustaining severe injury (ISS ≥ 9). Of the 14,973 patients with RTIs, 2853 sustained severe injury. Moderate or unhealthy air quality index, higher exposure to particulate matter ≤2.5 μm in diameter, bicyclists or pedestrians, greater road width, nighttime, and higher temperature and relative humidity were significant risk factors for severe injury. Exposure to nitrogen oxide and ozone did not increase the risk. Auto occupants and scene-to-hospital time were the protective factors. Sensitivity analyses showed consistent results between air pollutants and the risk of severe injury. Poor air quality and hot and humid weather conditions were associated with severe RTIs. Active commuters were at higher risk of sustaining severe RTI.
The coronavirus disease 2019 (COVID-19) pandemic has impacted emergency department (ED) practice, including the treatment of traumatic brain injury (TBI), which is commonly encountered in the ED. Our study aimed to evaluate TBI treatment efficiency in the ED during the COVID-19 pandemic. A retrospective observational study was conducted using the electronic medical records from three hospitals in metropolitan Taipei, Taiwan. The time from ED arrival to brain computed tomography (CT) and the time from ED arrival to surgical management were used as measures of treatment efficiency. TBI treatment efficiencies in the ED coinciding with a small-scale local COVID-19 outbreak in 2020 (P1) and large-scale community spread in 2021 (P2) were compared against the pre-pandemic efficiency recorded in 2019. The interval between ED arrival and brain CT was significantly shortened during P1 and P2 compared with the pre-pandemic interval, and no significant delay between ED arrival and surgical management was found, indicating increased treatment efficiency for TBI in the ED during the COVID-19 pandemic. Minimizing viral spread in the community and the hospital is vital to maintaining ED treatment efficiency and capacity. The ED should retain sufficient capacity to treat older patients with serious TBI during the COVID-19 pandemic.
University neighborhoods in Taiwan have high-volume traffic, which may increase motorcyclists’ risk of injury. However, few studies have analyzed the environmental factors affecting motorcycle crash injury severity in university neighborhoods. In this multicenter cross-sectional study, we explored the factors that increase the severity of such injuries, especially among young adults. We retrospectively connected hospital data to the Police Traffic Accident Dataset. Areas within 500 m of a university were considered university neighborhoods. We analyzed 4751 patients, including 513 with severe injury (injury severity score ≥ 8). Multivariate analysis revealed that female sex, age ≥ 45 years, drunk driving, early morning driving, flashing signals, and single-motorcycle crashes were risk factors for severe injury. Among patients aged 18–24 years, female sex, late-night and afternoon driving, and flashing signals were risk factors. Adverse weather did not increase the risk. Time to hospital was a protective factor, reflecting the effectiveness of urban emergency medical services. Lifestyle habits among young adults, such as drunk driving incidents and afternoon and late-night driving, were also explored. We discovered that understanding chaotic traffic in the early morning, flashing signals at the intersections, and roadside obstacles is key for mitigating injury severity from motorcycle crashes in university neighborhoods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.