Wave-packet interference is investigated within the complex quantum Hamilton-Jacobi formalism using a hydrodynamic description. Quantum interference leads to the formation of the topological structure of quantum caves in space-time Argand plots. These caves consist of the vortical and stagnation tubes originating from the isosurfaces of the amplitude of the wave function and its first derivative. Complex quantum trajectories display counterclockwise helical wrapping around the stagnation tubes and hyperbolic deflection near the vortical tubes. The string of alternating stagnation and vortical tubes is sufficient to generate divergent trajectories. Moreover, the average wrapping time for trajectories and the rotational rate of the nodal line in the complex plane can be used to define the lifetime for interference features.
Quantum trajectories in complex space in the framework of the quantum Hamilton-Jacobi formalism are investigated. For time-dependent problems, the complex quantum trajectories determined from the exact analytical wave function for the free Gaussian wave packet and the coherent state in the harmonic potential are used to demonstrate that the information transported by the particles in the complex space can be used to synthesize the time-dependent wave function on the real axis. For time-independent problems, the exact complex quantum trajectories for the Eckart potential are obtained by numerically integrating the equations of motion. The unusual structure of the total potential ͑the sum of the classical and the quantum potentials͒ for the stationary states for the Eckart potential is pointed out. The variations of the complex-valued kinetic energy, classical potential, and quantum potential along the complex quantum trajectories are analyzed. This paper not only analyzes complex quantum trajectories for time-dependent and time-independent systems but also provides a unified description for complex quantum trajectories for one-dimensional problems in the quantum Hamilton-Jacobi formalism.
An accurate computational method for the one-dimensional quantum Hamilton-Jacobi equation is presented. The Mobius propagation scheme, which can accurately pass through singularities, is used to numerically integrate the quantum Hamilton-Jacobi equation for the quantum momentum function. Bound state wave functions are then synthesized from the phase integral using the antithetic cancellation technique. Through this procedure, not only the quantum momentum functions but also the wave functions are accurately obtained. This computational approach is demonstrated through two solvable examples: the harmonic oscillator and the Morse potential. The excellent agreement between the computational and the exact analytical results shows that the method proposed here may be useful for solving similar quantum mechanical problems.
One-dimensional scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. First, the pole structure of the quantum momentum function for scattering wave functions is analyzed. The significant differences of the pole structure of this function between scattering wave functions and bound state wave functions are pointed out. An accurate computational method for the quantum Hamilton-Jacobi equation for general one-dimensional scattering problems is presented to obtain the scattering wave function and the reflection and transmission coefficients. The computational approach is demonstrated by analysis of scattering from a one-dimensional potential barrier. We not only present an alternative approach to the numerical solution of the wave function and the reflection and transmission coefficients but also provide a computational aspect within the quantum Hamilton-Jacobi formalism. The method proposed here should be useful for general one-dimensional scattering problems.
Quantum streamlines are investigated in the framework of the quantum Hamilton-Jacobi formalism. The local structures of the quantum momentum function (QMF) and the Polya vector field near a stagnation point or a pole are analyzed. Streamlines near a stagnation point of the QMF may spiral into or away from it, or they may become circles centered on this point or straight lines. Additionally, streamlines near a pole display east-west and north-south opening hyperbolic structure. On the other hand, streamlines near a stagnation point of the Polya vector field for the QMF display general hyperbolic structure, and streamlines near a pole become circles enclosing the pole. Furthermore, the local structures of the QMF and the Polya vector field around a stagnation point are related to the first derivative of the QMF; however, the magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Two nonstationary states constructed from the eigenstates of the harmonic oscillator are used to illustrate the local structures of these two fields and the dynamics of the streamlines near a stagnation point or a pole. This study presents the abundant dynamics of the streamlines in the complex space for one-dimensional time-dependent problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.