We have developed a new headstage architecture as part of a smart experimental arena, known as the EnerCage-HC2 system, which automatically delivers stimulation and collects behavioral data over extended periods with minimal small animal subject handling or personnel intervention in a standard rodent homecage. Equipped with a 4-coil inductive link, the EnerCage-HC2 system wirelessly powers the receiver (Rx) headstage, irrespective of the subject’s location or head orientation, eliminating the need for tethering or carrying bulky batteries. On the transmitter (Tx) side, a driver coil, five high quality (Q) factor segmented resonators at different heights and orientations, and a closed-loop Tx power controller create a homogeneous electromagnetic (EM) field within the homecage 3-D space, and compensate for drops in power transfer efficiency (PTE) due to Rx misalignments. The headstage is equipped with four small slanted resonators, each covering a range of head orientations with respect to the Tx resonators, which direct the EM field towards the load coil at the bottom of the headstage. Moreover, data links based on Wi-Fi, UART, and Bluetooth low energy are utilized to enables remote communication and control of the Rx. The PTE varies within 23.6–33.3% and 6.7–10.1% at headstage heights of 8 and 20 cm, respectively, while continuously delivering >40 mW to the Rx electronics even at 90° rotation. As a proof of EnerCage-HC2 functionality in vivo, a previously documented on-demand electrical stimulation of the globus pallidus, eliciting consistent head rotation, is demonstrated in three freely behaving rats.
Oxygenated (HBO) and deoxygenated hemoglobin (HBR) levels in the prefrontal cortex (PFC) were measured using functional near-infrared spectroscopy (fNIRS) to determine if PFC activity during a cognitive inhibition task distinguishes children with prenatal alcohol exposure (PAE, n=26) from both typically-developing controls (n=19) and a contrast group of children with other neurobehavioral problems (n=14). Despite showing evidence of increased PFC activity in the noninhibitory condition relative to controls, children in the PAE group displayed reduced PFC HBO and increased HBR relative to both other groups in the inhibitory condition, suggesting reduced PFC activity but increased oxygen consumption without sufficient oxygen replacement.
The ability to select between actions that are more vs. less likely to be reinforced is necessary for survival and navigation of a changing environment. A task termed “response-outcome contingency degradation” can be used in the laboratory to determine whether rodents behave according to such goal-directed response strategies. In one iteration of this task, rodents are trained to perform two food-reinforced behaviors, then the predictive relationship between one instrumental response and the associated outcome is modified by providing the reinforcer associated with that response non-contingently. During a subsequent probe test, animals can select between the two trained responses. Preferential engagement of the behavior most likely to be reinforced is considered goal-directed, while non-selective responding is considered a failure in response-outcome conditioning, or “habitual.” This test has largely been used with rats, and less so with mice. Here we compiled data collected from several cohorts of mice tested in our lab between 2012-2015. Mice were bred on either a C57BL/6 or predominantly BALB/c strain background. We report that both strains of mice can use information acquired as a result of instrumental contingency degradation training to select amongst multiple response options the response most likely to be reinforced. Mice differ, however, during the training sessions when the familiar response-outcome contingency is being violated. BALB/c mice readily generate perseverative or habit-like response strategies when the only available response is unlikely to be reinforced, while C57BL/6 mice more readily inhibit responding. These findings provide evidence of strain differences in response strategies when an anticipated reinforcer is unlikely to be delivered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.