SUMMARY The basic, still unanswered question about visual object representation is this: what specific information is encoded by neural signals? Theorists have long predicted that neurons would encode medial axis or skeletal object shape, yet recent studies reveal instead neural coding of boundary or surface shape. Here, we addressed this theoretical/experimental disconnect, using adaptive shape sampling to demonstrate for the first time explicit coding of medial axis shape in high-level object cortex (macaque monkey inferotemporal cortex or IT). Our metric shape analyses revealed a coding continuum, along which most neurons represent a configuration of both medial axis and surface components. Thus IT response functions embody a rich basis set for simultaneously representing skeletal and external shape of complex objects. This would be especially useful for representing biological shapes, which are often characterized by both complex, articulated skeletal structure and specific surface features.
The cerebral cortex of humans and macaques has specialized regions for processing faces and other visual stimulus categories. It is unknown whether a similar functional organization exists in New World monkeys, such as the common marmoset (Callithrix jacchus), a species of growing interest as a primate model in neuroscience. To address this question, we measured selective neural responses in the brain of four awake marmosets trained to fix their gaze upon images of faces, bodies, objects, and control patterns. In two of the subjects, we measured high gamma-range field potentials from electrocorticography arrays implanted over a large portion of the occipital and inferotemporal cortex. In the other two subjects, we measured BOLD fMRI responses across the entire brain. Both techniques revealed robust, regionally specific patterns of category-selective neural responses. We report that at least six face-selective patches mark the occipitotemporal pathway of the marmoset, with the most anterior patches showing the strongest preference for faces over other stimuli. The similar appearance of these patches to previous findings in macaques and humans, including their apparent arrangement in two parallel pathways, suggests that core elements of the face processing network were present in the common anthropoid primate ancestor living ϳ35 million years ago. The findings also identify the marmoset as a viable animal model system for studying specialized neural mechanisms related to high-level social visual perception in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.