The dynamics of a membrane coupled to an active fluid on top of a substrate is considered theoretically. It is assumed that the director field of the active fluid has rotational symmetry in the membrane plane. This situation is likely to be relevant for in vitro reconstructed actomyosinmembrane system. Different from a membrane coupled to a polar active fluid, this model predicts that only when the viscosity of the fluid above the membrane is sufficiently large, a contractile active fluid is able to slow down the relaxation of the membrane for perturbations with wavelength comparable to the thickness of the active fluid. Hence our model predicts a finite-wavelength instability in the limit of strong contractility, which is different from a membrane coupled to a polar active fluid. On the other hand, a membrane coupled to an extensile active fluid is always unstable against long wavelength perturbations due to splay induced flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.