Well‐graphitized core/shell iron/carbon nanoparticles (Fe@CNPs) were formed in toluene solutions containing Fe(CO)5‐C60/70 via an novel microwave arcing process. High temperature γ‐Fe phase was found to be stable at room temperature when encapsulated inside graphene shells. In the absence of C60/70, the structures of graphene shells are poor. Pre‐synthesized Co nanoparticles were used as templates for the growth of graphene shells in toluene‐C60/70 solutions. Via acid etching and removal of the central core Co nanoparticles, hollow carbon nanoparticles could be obtained. Further thermal annealing by focused microwave irradiation leads to merging of small core/shell metal/carbon nanoparticles into large ones, as well as conversion of body centered cubic (bcc) α‐Fe to face centered cubic (fcc) γ‐Fe. The possible growth mechanisms of core/shell metal/carbon nanoparticles were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.