The accuracy and fluency of a handover task affects the work efficiency of human–robot collaboration. A precise and proactive estimation of handover time points by robots when handing over assembly parts to humans can minimize waiting times and maximize efficiency. This study investigated and compared the cycle time, waiting time, and operators’ subjective preference of a human–robot collaborative assembly task when three handover prediction models were applied: traditional method-time measurement (MTM), Kalman filter, and trigger sensor approaches. The scenarios of a general repetitive assembly task and repetitive assembly under a learning curve were investigated. The results revealed that both the Kalman filter prediction model and the trigger sensor method were superior to the MTM fixed-time model in both scenarios in terms of cycle time and subjective preference. The Kalman filter prediction model could adjust the handover timing according to the operator’s current speed and reduce the waiting time of the robot and operator, thereby improving the subjective preference of the operator. Moreover, the trigger sensor method’s inherent flexibility concerning random single interruptions on the operator’s side earned it the highest scores in the satisfaction assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.