BackgroundType 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency.MethodologyThe oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model.Principal findingsComputational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival.Conclusions/SignificanceHypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable.
Although we initially observed a strong association between parity and thyroid autoimmunity, after controlling for age and other variables, we were unable to identify an association.
There is growing evidence that transplantation of cadaveric human islets is an effective therapy for type 1 diabetes. However, gauging the suitability of islet samples for clinical use remains a challenge. We hypothesized that islet quality is reflected in the expression of specific genes. Therefore, gene expression in 59 human islet preparations was analyzed and correlated with diabetes reversal after transplantation in diabetic mice. Analysis yielded 262 differentially expressed probesets, which together predict islet quality with 83% accuracy. Pathway analysis revealed that failing islet preparations activated inflammatory pathways, while functional islets showed increased regeneration pathway gene expression. Gene expression associated with apoptosis and oxygen consumption showed little overlap with each other or with the 262 probeset classifier, indicating that the three tests are measuring different aspects of islet cell biology. A subset of 36 probesets surpassed the predictive accuracy of the entire set for reversal of diabetes, and was further reduced by logistic regression to sets of 14 and 5 without losing accuracy. These genes were further validated with an independent cohort of 16 samples. We believe this limited number of gene classifiers in combination with other tests may provide complementary verification of islet quality prior to their clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.