The present study aimed to investigate the neural mechanism underlying semantic processing in Mandarin Chinese adult learners, focusing on the learners who were Indo-European language speakers with advanced levels of proficiency in Mandarin Chinese. We used functional magnetic resonance imaging technique and a semantic judgment task to test 24 Mandarin Chinese adult learners (L2 group) and 26 Mandarin Chinese adult native speakers (L1 group) as a control group. In the task, participants were asked to indicate whether two-character pairs were related in meaning. Compared to the L1 group, the L2 group had greater activation in the bilateral occipital regions, including the fusiform gyrus and middle occipital gyrus, as well as the right superior parietal lobule. On the other hand, less activation in the bilateral temporal regions was found in the L2 group relative to the L1 group. Correlation analysis further revealed that, within the L2 group, increased activation in the left middle temporal gyrus/superior temporal gyrus (M/STG, BA 21) was correlated with higher accuracy in the semantic judgment task as well as better scores in the two vocabulary tests, the Assessment of Chinese character list for grade 3 to grade 9 (A39) and the Peabody Picture Vocabulary Test-Revised. In addition, functional connectivity analysis showed that connectivity strength between the left fusiform gyrus and left ventral inferior frontal gyrus (IFG, BA 47) was modulated by the accuracy in the semantic judgment task in the L1 group. By contrast, this modulation effect was weaker in the L2 group. Taken together, our study suggests that Mandarin Chinese adult learners rely on greater recruitment of the bilateral occipital regions to process orthographic information to access the meaning of Chinese characters. Also, our correlation results provide convergent evidence that the left M/STG (BA 21) plays a crucial role in the storage of semantic knowledge for readers to access to conceptual information. Moreover, the connectivity results indicate that the left ventral pathway (left fusiform gyrus-left ventral IFG) is associated with orthographic-semantic processing in Mandarin Chinese. However, this semantic-related ventral pathway might require more time and language experience to be developed, especially for the late adult learners of Mandarin Chinese.
Classic linguistic analyses assume that syntax is the center of linguistic system. Under this assumption, a finite set of rules can produce an infinite number of sentences. By contrast, construction grammar posits that grammar emerges from language use. Chinese quadrisyllabic idiomatic expressions (QIEs) offer a testing ground for this theoretical construct owing to their high productivity. To understand the cognitive processing of structure and meaning during reading comprehension, we used a semantic judgment task to measure behavioral performance and brain activation (functional MRI). Participants were 19 Mandarin native speakers and 19 L2 learners of intermediate and advanced levels of Mandarin. In the task, participants were instructed to indicate whether the interpretation of a QIE was correct. Our behavioral results showed that L2 learners processed high frequency QIEs faster than low frequency ones. By contrast, low frequency QIEs were processed faster than high frequency ones by native speakers. This phenomenon may be attributed to semantic satiation which impedes the interpretation of high frequency QIEs. To unravel the puzzle, a further functional MRI experiment on native speakers was conducted. The results revealed that the comparison of high-frequency and low-frequency QIEs promoted significant anterior cingulate activation. Also, the comparison of idiomatic and pseudo-idiomatic constructions exhibited significant activation in the bilateral temporal poles, a region that computes semantics rather than syntactic structure. This result indicated that, for native speakers, processing Chinese idiomatic constructions is a conceptually driven process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.