Abstract. Previous personalized DTV recommendation systems focus only on viewers' historical viewing records or demographic data. This study proposes a new recommending mechanism from a user oriented perspective. The recommending mechanism is based on user properties such as Activities, Interests, Moods, Experiences, and Demographic information-AIMED. The AIMED data is fed into a neural network model to predict TV viewers' program preferences. Evaluation results indicate that the AIMED model significantly increases recommendation accuracy and decreases prediction errors compared to the conventional model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.