The main causes for failure in implant surgery are prolonged exposure of implants or wound and tissue ischemia. Bacterial infection caused by the surrounding medical environment and equipment is also a major risk factor. The medical risk would be greatly reduced if we could develop an implant coating to guide tissue growth and promote antibacterial activity. Mesoporous bioactive glasses are mainly silicates with good osteoinductivity and have been used in medical dentistry and orthopedics for several decades. Strontium ions and silver ions could plausibly be incorporated into bioactive glass to achieve the required function. Strontium ions are trace elements in human bone that have been proposed to promote osseointegration and angiogenesis. Silver ions can cause bacterial apoptosis through surface charge imbalance after bonding to the cell membrane. In this study, functional polyelectrolyte multilayer (PEM) coatings were adhered to 316L stainless steel (SS) by spin coating. The multilayer film was composed of biocompatible and biodegradable collagen as a positively charged layer, γ-polyglutamic acid (γ-PGA) as a negatively charged layer. Chitosan was incorporated to the 11th positively charged layer as a stabilizing barrier. Spray pyrolysis prepared mesoporous bioactive glass incorporated with silver and strontium (AgSrMBG) was added to each negatively charged layer. The PEM/AgSrMBG coating was well hydrophilic with a contact angle of 37.09°, hardness of 0.29 ± 0.09 GPa, Young’s modulus of 5.35 ± 1.55 GPa, and roughness of 374.78 ± 22.27 nm, as observed through nano-indention and white light interferometry. The coating’s antibacterial activity was sustained for 1 month through the inhibition zone test, and was biocompatible with rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), as observed in the MTT assay. There was more hydroxyapatite precipitation on the PEM/AgSrMBG surface after being soaked in simulated body fluid (SBF), as observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In both in vitro and in vivo tests, the PEM/AgSrMBG coating promoted angiogenesis, osseointegration, and antibacterial activity due to the sustained release of silver and strontium ions.
Background: Chronic kidney disease (CKD) is associated with bone and mineral metabolism. In this study we evaluated the comparative efficacies and safety of osteoporosis medications in patients with CKD or a history of kidney transplantation, and make recommendations for the best choice of osteoporosis treatment among patients with CKD or a history of kidney transplantation.Methods: We systemically searched for randomized controlled trials published in PubMed, Embase, and Cochrane databases up to June 2020. Network-meta analysis was used to compare the relative effectiveness of different treatments. A random-effects model was used when heterogeneity was expected. The safety of different treatments was also evaluated in terms of reported major adverse events.Results: A total of 17 studies with data from 10,214 patients who had stage 2–5 CKD, were receiving dialysis, or had a history of kidney transplantation were included in the network meta-analysis. Treatment with teriparatide, denosumab, alendronate, and raloxifene were all associated with a significantly reduced risk of fractures compared to treatment with placebos [teriparatide: odds ratio (OR) = 0.19, 95% confidence interval (CI): 0.10–0.35; denosumab: OR = 0.40, 95% CI: 0.27–0.58; alendronate: OR = 0.61, 95% CI: 0.40–0.92; raloxifene: OR = 0.52, 95% CI: 0.41–0.67]. The rank probability and the surface under the cumulative ranking (SUCRA) values suggested that teriparatide ranked the highest for improvement in vertebral bone mineral density (BMD) (SUCRA = 97.8%), whereas denosumab ranked the highest for improvement in femoral neck BMD (SUCRA = 88.3%).Conclusion: Teriparatide and denosumab seem to be the most effective treatments for preventing bone loss and reducing the risk of fracture in our network comparison. However, because of the limitations and potential biases in the reviewed studies, there is still some uncertainty about the best treatment options for osteoporosis in patients with CKD or a history of kidney transplantation.Systematic Review Registration: [PROSPERO], identifier [CRD42020209830].
Suture anchor fixation is a common method for securing bone and soft tissue in the body, with proven applications in the hip, elbow, hand, knee and foot. A critical limiting factor of suture anchors is the pull-out strength, particularly in suboptimal bone. This study introduces a novel 3D printed threadless suture anchor with a rectangular cross-section. The titanium anchor was designed with surface fenestration and a porous central core to improve bone ingrowth. The aim of this study was to compare the pull-out properties of the novel threadless anchor with a traditional circular threaded suture anchor. The anchors were inserted into a 0.24 g/cm3 synthetic cancellous bone block at angles of 90° and 135° to the surface. The sutures were pulled at 180° (parallel) to the surface under a static pull test (anchor pullout) and cyclic load test using a tensile testing machine. Under the static load, the greatest pullout strength was seen with the novel threadless anchor inserted at 90° (mean, 105.6 N; standard deviation [SD], 3.5 N). The weakest pullout strength was seen with the threaded anchor inserted at 90° (mean, 87.9 N; SD, 4.1 N). In the cyclic load test, all six of the threaded anchors with a 90° insertion angle pulled out after 18 cycles (70 N). All of the threadless anchors inserted at 90° survived the cyclic test (90 N). In conclusion, the novel threadless suture anchor with rectangular cross-section and traditional threaded suture anchor had similar pullout survivorship when inserted at either 90° or 135°. In addition, the 3D printed threadless anchor has the potential for good bone integration to improve long-term stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.