Linear classification is a useful tool in machine learning and data mining. For some data in a rich dimensional space, the performance (i.e., testing accuracy) of linear classifiers has shown to be close to that of nonlinear classifiers such as kernel methods, but training and testing speed is much faster. Recently, many research works have developed efficient optimization methods to construct linear classifiers and applied them to some large-scale applications. In this paper, we give a comprehensive survey on the recent development of this active research area.
In this paper, we decompose the problem of active learning into two parts, learning with few examples and learning by querying labels of samples. The first part is achieved mainly by SVM classifiers. We also consider variants based on transductive learning. In the second part, based on SVM decision values, we propose a framework to flexibly select points for query. Our experiments are conducted on the data sets of Causality Active Learning Challenge. With measurements of Area Under Curve (AUC) and Area under the Learning Curve (ALC), we find suitable methods for different data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.