We investigate the currently debated issue concerning whether transition-metal substitutions dope carriers in iron-based superconductors. From first-principles calculations of the configuration-averaged spectral function of BaFe2As2 with disordered Co or Zn substitutions of Fe, important doping effects are found beyond merely changing the carrier density. While the chemical potential shifts suggest doping of a large amount of carriers, a reduction of the coherent carrier density is found due to the loss of spectral weight. Therefore, none of the change in the Fermi surface, density of states, or charge distribution can be solely used for counting doped coherent carriers, let alone presenting the full effects of the disordered substitutions. Our study highlights the necessity of including disorder effects in the studies of doped materials in general.
In all iron pnictides, the positions of the ligand alternatively above and below the Fe plane create 2 inequivalent Fe sites. This results in 10 Fe 3d bands in the electronic structure. However, they do not all have the same status for an ARPES experiment. There are interference effects between the 2 Fe that modulate strongly the intensity of the bands and that can even switch their parity. We give a simple description of these effects, notably showing that ARPES polarization selection rules in these systems can not be applied by reference to a single Fe ion. We show that ARPES data for the electron pockets in Ba(Fe 0.92 Co 0.08 ) 2 As 2 are in excellent agreement with this model as well as with direct calculation of the spectral weight. We observe both the total suppression of some bands and the parity switching of some other bands. Once these effects are properly taken into account, the structure of the electron pockets, as measured by ARPES, becomes very clear and simple. By combining ARPES measurements in different experimental configurations, we clearly isolate each band forming one of the electron pockets. We identify a deep electron band along one ellipse axis with the d xy orbital and a shallow electron band along the perpendicular axis with the d xz /d yz orbitals, in good agreement with band-structure calculations. We show that the electron pockets are warped as a function of k z as expected theoretically, but that they are much smaller than predicted by the calculation.
We investigate the physical effects of translational symmetry breaking in Fe-based high-temperature superconductors due to alternating anion positions. In the representative parent compounds, including the newly discovered Fe-vacancy-ordered K(0.8)Fe(1.6)Se(2), an unusual change of orbital character is found across the one-Fe Brillouin zone upon unfolding the first-principles band structure and Fermi surfaces, suggesting that covering a larger one-Fe Brillouin zone is necessary in experiments. Most significantly, the electron pockets (critical to the magnetism and superconductivity) are found only created with broken symmetry, advocating strongly its full inclusion in future studies, particularly on the debated nodal structures of the superconducting order parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.