A novel integrated multidimensional liquid chromatography (IMDL) method is demonstrated for the separation of peptide mixtures by two-dimensional HPLC coupled with ion trap mass spectrometry. The method uses an integrated column, containing both strong cation exchange and reversed-phase sections for two-dimensional liquid chromatography. The peptide mixture was fractionated by a pH step using a series of pH buffers, followed by reversed-phase chromatography. Since no salt was used during separation, the integrated multidimensional liquid chromatography can be directly connected to mass spectrometry for peptide analysis. The pH buffers were injected from an autosampler, and the entire process can be carried out on a one-dimensional liquid chromatography system. In a single analysis, the IMDL system, coupled with linear ion trap mass spectrometry, identified more than 2000 proteins in mouse liver. The peptides were eluted according to their pI distribution. The resolution of the pH fractionation is approximately 0.5 pH unit. The method has low overlapping across pH fractions, good resolution of peptide mixture, and good correlation of peptide pIs with pH steps. This method provides a technique for large-scale protein identification using existing one-dimensional HPLC systems.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.
The conventional 2-D LC-MS/MS setup for global proteome analysis was based on online and offline salt gradients (step and continuous) using strong-cation-exchange chromatography in conjunction with RP chromatography and MS. The use of the online system with step salt elution had the possibility of resulting in peptide overlapping across fractions. The offline mode had the option to operate with continuous salt gradient to decrease peak overlap, but exhibited decreased robustness, lower reproducibility, and sample loss during the process. Due to the extensive washing requirement between the chromatography steps, online continuous gradient was not an option for salt elution. In this report, a fully automated, online, and continuous gradient (pH continuous online gradient, pCOG) 2-D LC-MS/MS system is introduced that provided excellent separation and identification power. The pH gradient-based elution provided more basic peptides than that of salt-based elution. Fraction overlap was significantly minimized by combining pH and continuous gradient elutions. This latter approach also increased sequence coverage and the concomitant confidence level in protein identification. The salt and pH elution-based 2-D LC-MS/MS approaches were compared by analyzing the mouse liver proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.