In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial–nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic–nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic–nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
BackgroundNanoparticles can be used for targeted drug delivery, in particular for brain cancer therapy. However, this requires a detailed analysis of nanoparticles from the associated microvasculature to the tumor, not easy because of the required high spatial resolution. The objective of this study is to demonstrate an experimental solution of this problem, based in vivo and post-mortem whole organ imaging plus nanoscale 3-dimensional (3D) X-ray microscopy.ResultsThe use of gold nanoparticles (AuNPs) as contrast agents paved the way to a detailed high-resolution three dimensional (3D) X-ray and fluorescence imaging analysis of the relation between xenografted glioma cells and the tumor-induced angiogenic microvasculature. The images of the angiogenic microvessels revealed nanoparticle leakage. Complementary tests showed that after endocytotic internalization fluorescent AuNPs allow the visible-light detection of cells.ConclusionsAuNP-loading of cells could be extended from the case presented here to other imaging techniques. In our study, they enabled us to (1) identify primary glioma cells at inoculation sites in mice brains; (2) follow the subsequent development of gliomas. (3) Detect the full details of the tumor-related microvasculature; (4) Finding leakage of AuNPs from the tumor-related vasculature, in contrast to no leakage from normal vasculature.Electronic supplementary materialThe online version of this article (doi:10.1186/s12951-015-0140-2) contains supplementary material, which is available to authorized users.
Purpose To investigate the ocular surface microbiome of patients with unilateral or asymmetric glaucoma being treated with topical ophthalmic medications in one eye and to determine whether microbial community changes were related to measures of ocular surface disease. Methods V3-V4 16S rRNA sequencing was conducted on ocular surface swabs collected from both eyes of 17 subjects: 10 patients with asymmetric/unilateral glaucoma using topical glaucoma therapy on only one eye and seven age-matched, healthy controls with no history of ocular disease or eyedrop use. Samples were categorized into three groups: patients’ glaucomatous eye treated with eyedrops, patients’ contralateral eye without eyedrops, and healthy control eyes. Comparisons were made for microbial diversity and composition, with differences in composition tested for association with ocular surface disease measures including tear meniscus height, tear break-up time, and Dry Eye Questionnaire. Results Samples obtained from the patients’ treated and untreated eyes both had significantly greater alpha-diversity and relative abundance of gram-negative organisms compared to healthy controls. The microbial composition of patient eyes was associated with decreased tear meniscus height and tear break-up time, whereas metagenomic predictions, based on 16S rRNA data, suggested increased synthesis of lipopolysaccharide. Conclusions The ocular surface microbiome of patients taking unilateral preserved glaucoma drops is characterized by a highly diverse array of gram-negative bacteria that is significantly different from the predominantly gram-positive microbes detected on healthy control eyes. These compositional differences were associated with decreased tear film measures and distinct inferred protein synthesis pathways, suggesting a potential link between microbial alterations and ocular surface inflammation.
Rationale and Objectives Low dose chest computed tomography (LDCT), increasingly being used for screening of lung cancer, may also be used to measure breast density, which is proven as a risk factor for breast cancer. In this study we developed a segmentation method to measure quantitative breast density on CT images and correlated with MR density. Materials and Methods Forty healthy females receiving both LDCT and breast magnetic resonance imaging (MRI) were studied. A semi-automatic method was applied to quantify the breast density on LDCT images. The intra-, inter-operator reproducibility was evaluated. The volumetric density on MRI was obtained by using a well-established automatic template-based segmentation method. The breast volume (BV), fibroglandular tissue volume (FV), and percent breast density (PD) measured on LDCT and MRI were compared. Results The measurements of BV, FV, and PD on LDCT images yields highly consistent results, with the intraclass correlation coefficient (ICC) of 0.999 for BV, 0.977 for FV, and 0.966 for PD for intra-operator reproducibility; and ICC of 0.953 for BV, 0.974 for FV, and 0.973 for PD for inter-operator reproducibility. The BV, FV, and PD measured on LDCT and MRI were well correlated (all r≥0.90). Bland-Altman plots showed that a larger BV and FV were measured on LDCT compared with MRI. Conclusions The preliminary results showed that quantitative breast density can be measured from LDCT, and that our segmentation method could yield a high reproducibility on the measured volume and percent breast density. The results measured on LDCT and MRI were highly correlated. Our results showed that LDCT may provide valuable information about breast density for evaluating breast cancer risk.
Recognizing the MRI appearance of tumor recurrence in breast myocutaneous flap reconstructions is important for early detection of recurrence and in the evaluation of extent of disease to guide clinical management. Bilateral breast MRI for high-risk cancer screening of the native breast is a unique opportunity to detect recurrence in the reconstructed breast before it is clinically apparent. We describe a range of MRI appearances of breast cancer recurrence in patients with myocutaneous flap reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.