Major parts of anthropogenic and natural aerosols are hygroscopic and deliquesce at high humidity, particularly when depositing to leaf surfaces close to transpiring stomata. Deliquescence and subsequent salt creep may establish thin, extraordinary pathways into the stomata, which foster stomatal uptake of nutrients and water but may also cause stomatal liquid water loss by wicking. Such additional water loss is not accompanied by a wider stomatal aperture with a larger CO2 influx and hypothetically reduces water use efficiency (WUE). Here, the possible direct impacts of aerosols on physical and physiological parameters of camphor (Cinnamomum camphora) were studied (i) in a greenhouse experiment using aerosol exclusion and (ii) in a field study in Taiwan, comparing trees at two sites with different aerosol regimes. Scanning electron microscopy (SEM) images showed that leaves grown under aerosol exclusion in filtered air (FA) were lacking the amorphous, flat areas that were abundant on leaves grown in ambient air (AA), suggesting salt crusts formed from deliquescent aerosols. Increasing vapor pressure deficit (VPD) resulted in half the Ball-Berry slope and double WUE for AA compared to FA leaves. This apparent contradiction to the wicking hypothesis may be due to the independent, overcompensating effect of stomatal closure in response to VPD, which affects AA more than FA stomata. Compared to leaves in a more polluted region in the Taiwanese Southwest, NaCl aerosols dominated the leaf surface conditions on mature camphor trees in Eastern Taiwan, while the considerably lower contact angles and the 2.5 times higher minimum epidermal conductances might have come from organic surfactants. Interpretations of SEM images from leaf surface microstructures should consider amorphous areas as possible indicators of aerosol deposition and other hygroscopic material. The amount and type of the material determine the resulting impacts on plant water relations, together with the surrounding atmosphere and ecophysiological traits.
Aerosols can contribute to plant nutrition via foliar uptake. The conditions for this are best at night because the humidity is high and hygroscopic, saline deposits can deliquesce as a result. Still, stomata tend to be closed at night to avoid unproductive water loss. However, if needed, nutrients are on the leaf surface, and plants could benefit from nocturnal stomatal opening because it further increases humidity in the leaf boundary layer and allows for stomatal nutrient uptake. We tested this hypothesis on P-deficient soil by comparing the influence of ambient aerosols and additional foliar P application on nocturnal transpiration. We measured various related leaf parameters, such as the foliar water loss, minimum leaf conductance (gmin), turgor loss point, carbon isotope ratio, contact angle, specific leaf area (SLA), tissue element concentration, and stomatal and cuticular characteristics. For untreated leaves grown in filtered, aerosol-free air (FA), nocturnal transpiration consistently decreased overnight, which was not observed for leaves grown in unfiltered ambient air (AA). Foliar application of a soluble P salt increased nocturnal transpiration for AA and FA leaves. Crusts on stomatal rims were shown by scanning electron microscopy, supporting the idea of stomatal uptake of deliquescent salts. Turgor loss point and leaf moisture content indicated a higher accumulation of solutes, due to foliar uptake by AA plants than FA plants. The hypothesis that deliquescent leaf surface salts may play a role in triggering nocturnal transpiration was supported by the results. Still, further experiments are required to characterize this phenomenon better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.