Background The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Objective Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Methods Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. Results In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. Conclusions A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
BackgroundAutomated disease code classification using free-text medical information is important for public health surveillance. However, traditional natural language processing (NLP) pipelines are limited, so we propose a method combining word embedding with a convolutional neural network (CNN).ObjectiveOur objective was to compare the performance of traditional pipelines (NLP plus supervised machine learning models) with that of word embedding combined with a CNN in conducting a classification task identifying International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis codes in discharge notes.MethodsWe used 2 classification methods: (1) extracting from discharge notes some features (terms, n-gram phrases, and SNOMED CT categories) that we used to train a set of supervised machine learning models (support vector machine, random forests, and gradient boosting machine), and (2) building a feature matrix, by a pretrained word embedding model, that we used to train a CNN. We used these methods to identify the chapter-level ICD-10-CM diagnosis codes in a set of discharge notes. We conducted the evaluation using 103,390 discharge notes covering patients hospitalized from June 1, 2015 to January 31, 2017 in the Tri-Service General Hospital in Taipei, Taiwan. We used the receiver operating characteristic curve as an evaluation measure, and calculated the area under the curve (AUC) and F-measure as the global measure of effectiveness.ResultsIn 5-fold cross-validation tests, our method had a higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086) than traditional NLP-based approaches (mean AUC range 0.8183-0.9571; mean F-measure range 0.5050-0.8739). A real-world simulation that split the training sample and the testing sample by date verified this result (mean AUC 0.9645; mean F-measure 0.9003 using the proposed method). Further analysis showed that the convolutional layers of the CNN effectively identified a large number of keywords and automatically extracted enough concepts to predict the diagnosis codes.ConclusionsWord embedding combined with a CNN showed outstanding performance compared with traditional methods, needing very little data preprocessing. This shows that future studies will not be limited by incomplete dictionaries. A large amount of unstructured information from free-text medical writing will be extracted by automated approaches in the future, and we believe that the health care field is about to enter the age of big data.
We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells.
Background Most current state-of-the-art models for searching the International Classification of Diseases, Tenth Revision Clinical Modification (ICD-10-CM) codes use word embedding technology to capture useful semantic properties. However, they are limited by the quality of initial word embeddings. Word embedding trained by electronic health records (EHRs) is considered the best, but the vocabulary diversity is limited by previous medical records. Thus, we require a word embedding model that maintains the vocabulary diversity of open internet databases and the medical terminology understanding of EHRs. Moreover, we need to consider the particularity of the disease classification, wherein discharge notes present only positive disease descriptions. Objective We aimed to propose a projection word2vec model and a hybrid sampling method. In addition, we aimed to conduct a series of experiments to validate the effectiveness of these methods. Methods We compared the projection word2vec model and traditional word2vec model using two corpora sources: English Wikipedia and PubMed journal abstracts. We used seven published datasets to measure the medical semantic understanding of the word2vec models and used these embeddings to identify the three–character-level ICD-10-CM diagnostic codes in a set of discharge notes. On the basis of embedding technology improvement, we also tried to apply the hybrid sampling method to improve accuracy. The 94,483 labeled discharge notes from the Tri-Service General Hospital of Taipei, Taiwan, from June 1, 2015, to June 30, 2017, were used. To evaluate the model performance, 24,762 discharge notes from July 1, 2017, to December 31, 2017, from the same hospital were used. Moreover, 74,324 additional discharge notes collected from seven other hospitals were tested. The F-measure, which is the major global measure of effectiveness, was adopted. Results In medical semantic understanding, the original EHR embeddings and PubMed embeddings exhibited superior performance to the original Wikipedia embeddings. After projection training technology was applied, the projection Wikipedia embeddings exhibited an obvious improvement but did not reach the level of original EHR embeddings or PubMed embeddings. In the subsequent ICD-10-CM coding experiment, the model that used both projection PubMed and Wikipedia embeddings had the highest testing mean F-measure (0.7362 and 0.6693 in Tri-Service General Hospital and the seven other hospitals, respectively). Moreover, the hybrid sampling method was found to improve the model performance (F-measure=0.7371/0.6698). Conclusions The word embeddings trained using EHR and PubMed could understand medical semantics better, and the proposed projection word2vec model improved the ability of medical semantics extraction in Wikipedia embeddings. Although the improvement from the projection word2vec model in the real ICD-10-CM coding task was...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.