Abstract:In this study, high-density single crystalline Ga-doped ZnO (GZO) nanorods were grown on glass substrate by the hydrothermal method. The structural and optoelectronic properties of Ga-doped ZnO nanorods were studied. The microstructure of the GZO was studied by scanning electrical microscope (SEM). The structural characteristics of the GZO were measured by X-ray diffraction (XRD). It was found that the peaks related to the wurtzite structure ZnO (100), (002), and (101) diffraction peaks. The (002) peak indicates that the nanorods were preferentially oriented in the c-axis direction. The existence of Ga was examined by energy diffraction spectra (EDS), indicating the Ga atom entered into the ZnO lattice. The optical properties of the GZO were measured by photoluminescence spectra. It was found that all GZO nanorod arrays showed two different emissions, including UV (ultraviolet) and green emissions. GZO nanorod metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors (PD) were also fabricated. The photo-current and dark-current constant ratio of the fabricated PD was approximately 15.2 when biased at 1 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.