Purpose:The aim of this study was to determine the clinical and molecular characteristics of 2,079 patients who underwent hereditary cancer multigene panel testing.Methods:Panels included comprehensive analysis of 14–22 cancer susceptibility genes (BRCA1 and BRCA2 not included), depending on the panel ordered (BreastNext, OvaNext, ColoNext, or CancerNext). Next-generation sequencing and deletion/duplication analyses were performed for all genes except EPCAM (deletion/duplication analysis only). Clinical histories of ColoNext patients harboring mutations in genes with well-established diagnostic criteria were assessed to determine whether diagnostic/testing criteria were met.Results:Positive rates were defined as the proportion of patients with a pathogenic mutation/likely pathogenic variant(s) and were as follows: 7.4% for BreastNext, 7.2% for OvaNext, 9.2% for ColoNext, and 9.6% for CancerNext. Inconclusive results were found in 19.8% of BreastNext, 25.6% of OvaNext, 15.1% of ColoNext, and 23.5% of CancerNext tests. Based on information submitted by clinicians, 30% of ColoNext patients with mutations in genes with well-established diagnostic criteria did not meet corresponding criteria.Conclusion:Our data point to an important role for targeted multigene panels in diagnosing hereditary cancer predisposition, particularly for patients with clinical histories spanning several possible diagnoses and for patients with suspicious clinical histories not meeting diagnostic criteria for a specific hereditary cancer syndrome.
Precise body and organ sizes in the adult animal are ensured by a range of signaling pathways. In a screen to identify genes affecting hindgut morphogenesis in Drosophila, we identified a P-element insertion in dRheb, a novel, highly conserved member of the Ras superfamily of G-proteins. Overexpression of dRheb in the developing fly (using the GAL4:UAS system) causes dramatic overgrowth of multiple tissues: in the wing,this is due to an increase in cell size; in cultured cells, dRheboverexpression results in accumulation of cells in S phase and an increase in cell size. Using a loss-of-function mutation we show that dRheb is required in the whole organism for viability (growth) and for the growth of individual cells. Inhibition of dRheb activity in cultured cells results in their arrest in G1 and a reduction in size. These data demonstrate that dRheb is required for both cell growth (increase in mass) and cell cycle progression; one explanation for this dual role would be that dRheb promotes cell cycle progression by affecting cell growth. Consistent with this interpretation, we find that flies with reduced dRheb activity are hypersensitive to rapamycin, an inhibitor of the growth regulator TOR. In cultured cells, the effect of overexpressing dRheb was blocked by the addition of rapamycin. These results imply that dRheb is involved in TOR signaling.
Purpose Most existing literature describes Lynch syndrome (LS) as a hereditary syndrome leading to high risks of colorectal cancer (CRC) and endometrial cancer mainly as a result of mutations in MLH1 and MSH2. Most of these studies were performed on cohorts with disease suggestive of hereditary CRC and population-based CRC and endometrial cancer cohorts, possibly biasing results. We aimed to describe a large cohort of mismatch repair (MMR) mutation carriers ascertained through multigene panel testing, evaluate their phenotype, and compare the results with those of previous studies. Methods We retrospectively reviewed clinical histories of patients who had multigene panel testing, including the MMR and EPCAM genes, between March 2012 and June 2015 (N = 34,981) and performed a series of statistical comparisons. Results Overall, MSH6 mutations were most frequent, followed by PMS2, MSH2, MLH1, and EPCAM mutations, respectively. Of 528 patients who had MMR mutations, 63 (11.9%) had breast cancer only and 144 (27.3%) had CRC only. When comparing those with breast cancer only to those with CRC only, MSH6 and PMS2 mutations were more frequent than MLH1 and MSH2 mutations ( P = 2.3 × 10). Of the 528 patients, 22.2% met BRCA1 and BRCA2 ( BRCA1/2) testing criteria and not LS criteria, and 5.1% met neither BRCA1/2 nor LS testing criteria. MSH6 and PMS2 mutations were more frequent than MLH1 and MSH2 mutations among patients who met BRCA1/2 testing criteria but did not meet LS testing criteria ( P = 4.3 × 10). Conclusion These results provide a new perspective on LS and suggest that individuals with MSH6 and PMS2 mutations may present with a hereditary breast and ovarian cancer phenotype. These data also highlight the limitations of current testing criteria in identifying these patients, as well as the need for further investigation of cancer risks in patients with MMR mutations.
PurposeBlood/saliva DNA is thought to represent the germline in genetic cancer risk assessment. Cases with pathogenic TP53 variants detected by multi-gene panel tests (MGPT) are often discordant with Li-Fraumeni Syndrome (LFS), raising concern about misinterpretation of acquired aberrant clonal expansions (ACE) with TP53 variants as germline results.MethodsPathogenic TP53 variants with abnormal next-generation sequencing (NGS) metrics (e.g., decreased ratio [<25%] of mutant to wild-type allele, >2 detected alleles) were selected from a CLIA laboratory testing cohort. Alternate tissues and/or close relatives were tested to discern between ACE and germline status. Clinical data and LFS testing criteria were examined.ResultsAmong 114,630 MGPT and 1,454 TP53 gene-specific analyses, abnormal NGS metrics were observed in 20% of 353 TP53 positive results, and ACE was confirmed for 91% of cases with ancillary materials, most due to clonal hematopoiesis. Only four met Chompret criteria. ACE cases were older (50 years vs 33.7; P = 0.02) and were more frequent among MGPT (66/285; 23.2%) vs TP53 gene-specific tests (6/68; 8.8%, P = 0.005).ConclusionACE confounds germline diagnosis, may portend hematologic malignancy, and may result in unwarranted clinical interventions. Ancillary testing to confirm germline status should precede Li-Fraumeni syndrome management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.