Treatment of early relapsing-remitting multiple sclerosis with the lymphocyte-depleting humanized monoclonal antibody alemtuzumab (Campath [registered trade mark]) significantly reduced the risk of relapse and accumulation of disability compared with interferon β-1a in a phase 2 trial [Coles et al., (Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N Engl J Med 2008; 359: 1786-801)]. Patients treated with alemtuzumab experienced an improvement in disability at 6 months that was sustained for at least 3 years. In contrast, those treated with interferon β-1a steadily accumulated disability. Here, by post hoc subgroup analyses of the CAMMS223 trial, we show that among participants with no clinical disease activity immediately before treatment, or any clinical or radiological disease activity on-trial, disability improved after alemtuzumab but not following interferon β-1a. This suggests that disability improvement after alemtuzumab is not solely attributable to its anti-inflammatory effect. So we hypothesized that lymphocytes, reconstituting after alemtuzumab, permit or promote brain repair. Here we show that after alemtuzumab, and only when specifically stimulated with myelin basic protein, peripheral blood mononuclear cell cultures produced increased concentrations of brain-derived neurotrophic factor, platelet-derived growth factor and ciliary neurotrophic factor. Analysis by reverse transcriptase polymerase chain reaction of cell separations showed that the increased production of ciliary neurotrophic factor and brain-derived neurotrophic factor after alemtuzumab is attributable to increased production by T cells. Media from these post-alemtuzumab peripheral blood mononuclear cell cultures promoted survival of rat neurones and increased axonal length in vitro, effects that were partially reversed by neutralizing antibodies against brain-derived nerve growth factor and ciliary neurotrophic factor. This conditioned media also enhanced oligodendrocyte precursor cell survival, maturation and myelination. Taken together, the clinical analyses and laboratory findings support the interpretation that improvement in disability after alemtuzumab may result, in part, from neuroprotection associated with increased lymphocytic delivery of neurotrophins to the central nervous system.
Background and purpose Acute leukocytosis is a well-established response to intracerebral hemorrhage (ICH). Leukocytes, because of their interaction with platelets and coagulation factors, may in turn play a role in hemostasis. We investigated whether admission leukocytosis was associated with reduced bleeding following acute ICH. Methods Consecutive patients with primary ICH were prospectively collected from 1994 to 2015 and retrospectively analyzed. We included subjects with a follow-up CT scan available and automated complete white blood cell (WBC) count performed within 48 h from onset. Baseline and follow-up hematoma volumes were calculated with semi-automated software and hematoma expansion was defined as volume increase > 30% or 6 mL. The association between WBC count and ICH expansion was investigated with multivariate logistic regression. Results 1302 subjects met eligibility criteria (median age 75 years, 55.8 % males), of whom 207 (15.9 %) experienced hematoma expansion. Higher leukocyte count on admission was associated with reduced risk of hematoma expansion (Odds Ratio for 1000 cells increase [OR] 0.91, 95 % Confidence Interval [CI] 0.86–0.96, p=0.001). The risk of hematoma expansion was inversely associated with neutrophil count (OR 0.90, 95 % CI 0.85–0.96, p=0.001) and directly associated with monocyte count (OR 2.71, 95 % CI 1.08–6.83, p=0.034). There was no association between lymphocyte count and ICH expansion (OR 0.96, 95 % CI 0.79–1.17, p=0.718). Conclusions Higher admission WBC count is associated with lower risk of hematoma expansion. This highlights a potential role of the inflammatory response in modulating the coagulation cascade following acute ICH.
IMPORTANCECalcium is a key cofactor of the coagulation cascade and may play a role in the pathophysiology of intracerebral hemorrhage (ICH).OBJECTIVE To investigate whether a low serum calcium level is associated with an increase in the extent of bleeding in patients with ICH as measured by baseline hematoma volume and risk of hematoma expansion. DESIGN, SETTING, AND PARTICIPANTSProspective cohort study of 2103 consecutive patients with primary ICH ascertained during the period between 1994 and 2015 at an academic medical center. The statistical analysis was performed in January 2016. MAIN OUTCOMES AND MEASURESTotal calcium level was measured on admission, and hypocalcemia was defined as a serum calcium level of less than 8.4 mg/dL. Baseline and follow-up hematoma volumes, detected by noncontrast computed tomography, were measured using a computer-assisted semiautomatic analysis. Hematoma expansion was defined as an increase of more than 30% or 6 mL from baseline ICH volume. Associations between serum calcium level and baseline hematoma volume and between serum calcium level and ICH expansion were investigated in multivariable linear and logistic regression models, respectively. RESULTS A total of 2123 patients with primary ICH were screened, and 2103 patients met the inclusion criteria (mean [SD] age, 72.7 [12.5] years; 54.3% male patients), of whom 229 (10.9%) had hypocalcemia on admission. Hypocalcemic patients had a higher median baseline hematoma volume than did normocalcemic patients (37 mL [IQR, 15-72 mL] vs 16 mL [IQR, 6-44 mL]; P < .001). Low calcium levels were independently associated with higher baseline ICH volume (β = −0.13, SE = .03, P < .001). A total of 1393 patients underwent follow-up noncontrast computed tomography and were included in the ICH expansion analysis. In this subgroup, a higher serum calcium level was associated with reduced risk of ICH expansion (odds ratio, 0.55 [95% CI, 0.35-0.86]; P = .01), after adjusting for other confounders.CONCLUSIONS AND RELEVANCE Hypocalcemia correlates with the extent of bleeding in patients with ICH. A low calcium level may be associated with a subtle coagulopathy predisposing to increased bleeding and might therefore be a promising therapeutic target for acute ICH treatment trials.
Rationale: Ischemic stroke (IS) is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. Objective: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest genome-wide association study (GWAS) in IS recovery to date. Methods and Results: A 12-cohort, two-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent IS cases. Functional outcome was recorded using 3-month modified Rankin Scale (mRS). Analyses were adjusted for confounders such as discharge NIHSS. A gene-based burden test was performed. The discovery phase (n=1,225) was followed by open (n=2,482) and stringent joint-analyses (n=1,791). Those cohorts with mRS recorded at timepoints other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in Pals1-Associated Tight Junction (PATJ) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, beta=0•40, p=1•70×10 −9). Conclusions: Our results identify a set of common variants in PATJ gene associated with 3month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.