Over the past several years, the formation of nanowire heterostructures via a solid-state reaction between a semiconductor nanowire and metal contact pads has attracted great interest. This is owing to its ready application in nanowire field-effect transistors (FETs) with a well-controlled channel length using a facile rapid thermal annealing process. We report the effect of oxide confinement on the formation of Ge nanowire heterostructures via a controlled reaction between a vapor-liquid-solid-grown, single-crystalline Ge nanowire and Ni pads. In contrast to the previous formation of Ni(2)Ge/Ge/Ni(2)Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni(2)Ge and Ge with the confinement of Al(2)O(3) during annealing. Significantly, back-gate FETs based on this Ni(2)Ge/NiGe/Ge/NiGe/Ni(2)Ge heterostructure demonstrated a high-performance p-type transistor behavior, showing a large on/off ratio of more than 10(5) and a high normalized transconductance of 2.4 μS/μm. The field-effect hole mobility was extracted to be 210 cm(2)/(V s). Temperature-dependent I-V measurements further confirmed that NiGe has an ideal ohmic contact to p-type Ge with a small Schottky barrier height of 0.11 eV. Moreover, the hysteresis during gate bias sweeping was significantly reduced after Al(2)O(3) passivation, and our Ω-gate Ge nanowire FETs using Al(2)O(3) as the top-gate dielectric showed an enhanced subthreshold swing and transconductance. Therefore, we conclude that the Al(2)O(3) layer can effectively passivate the Ge surface and also serve as a good gate dielectric in Ge top-gate FETs. Our innovative approach provides another freedom to control the growth of nanowire heterostructure and to further achieve high-performance nanowire transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.