Southern Taiwan’s Kenting National Park is a popular retreating place for many domestic and international tourists, with increasing tourist numbers potentially over-burdening the coastal ecosystems. To better understand human impacts, a long-term ecological research program was initiated in 2001 to track water quality at 14 coral reef-abutting sites throughout the park since then. Extracting the data from this 20-year survey, we found that increasing in the nutrient levels during the summer rainy season, together with the drops in salinity led by freshwater inputs (land- & rainfall-derived), was the main impact to coral reef ecosystem of Kenting. Cluster analysis further confirmed the nutrient influx was mainly attributed to the local discharge outlets with dense of villages and hotels at upstream. Therefore, more efforts are needed to input to control tourist number, treat waste water discharge and strengthen land protection facilities.
Abstract. The ocean is the largest carbon reservoir and plays a crucial role in regulating atmospheric CO2 levels, especially in the face of climate change. In coral reef ecosystems, the complexity and importance of the carbonate system must be better appreciated as atmospheric CO2 concentrations continue to rise. This study measured pCO2 over time and space in Nanwan Bay, a coral reef ecosystem in Southern Taiwan, to identify factors that influence its variation. The results showed that mean pCO2 values varied seasonally, with values of 394 µatm in spring, 406 µatm in summer, 399 µatm in fall, and 367 µatm in winter. These seasonal differences (ΔpCO2) were -2, 14, 7, and -29 µatm, respectively. These findings suggest that the Nanwan Bay coral reef ecosystem acts as a sink for atmospheric CO2 during the spring and winter, with an average sea-air gas flux of -1 gC m-2 year-1 and a net annual uptake of -29 t. The carbonaceous parameters of the surface water in this high-biodiversity sub-tropical marine ecosystem were influenced not only by seasonal temperature variation but also by vertical mixing, intermittent upwelling, and biological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.