A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results.
A new version of the method of approximate particular solutions (MAPSs) using radial basis functions (RBFs) has been proposed for solving a general class of elliptic partial differential equations. In the solution process, the Laplacian is kept on the left-hand side as a main differential operator. The other terms are moved to the right-hand side and treated as part of the forcing term. In this way, the close-form particular solution is easy to obtain using various RBFs. The numerical scheme of the new MAPSs is simple to implement and yet very accurate. Three numerical examples are given and the results are compared to Kansa's method and the method of fundamental solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.