BackgroundUnder appropriate culture conditions, undifferentiated embryonic stem (ES) cells can undergo multiple self-renewal cycles without loss of pluripotency suggesting they must be equipped with specific defense mechanisms to ensure sufficient genetic stability during self-renewal expansion. The ATP binding cassette transporter ABCG2 is expressed in a wide variety of somatic and embryonic stem cells. However, whether it plays an important role in stem cell maintenance remains to be defined.Methodology/Principal FindingsHere we provide evidence to show that an increase in the level of ABCG2 was observed accompanied by ES colony expansion and then were followed by decreases in the level of protoporphyrin IX (PPIX) indicating that ABCG2 plays a role in maintaining porphyrin homoeostasis. RNA-interference mediated inhibition of ABCG2 as well as functional blockage of ABCG2 transporter with fumitremorgin C (FTC), a specific and potent inhibitor of ABCG2, not only elevated the cellular level of PPIX, but also arrest the cell cycle and reduced expression of the pluripotent gene Nanog. Overexpression of ABCG2 in ES cells was able to counteract the increase of endogenous PPIX induced by treatment with 5-Aminolevulinic acid suggesting ABCG2 played a direct role in removal of PPIX from ES cells. We also found that excess PPIX in ES cells led to elevated levels of reactive oxygen species which in turn triggered DNA damage signals as indicated by increased levels of γH2AX and phosphorylated p53. The increased level of p53 reduced Nanog expression because RNA- interference mediated inhibition of p53 was able to prevent the downregulation of Nanog induced by FTC treatment.Conclusions/SignificanceThe present work demonstrated that ABCG2 protects ES cells from PPIX accumulation during colony expansion, and that p53 and γH2AX acts as a downstream checkpoint of ABCG2-dependent defense machinery in order to maintain the self-renewal of ES cells.
Asthma, a chronic helper T cell type 2-mediated inflammatory disease, is characterized by airway hyperresponsiveness and inflammation. Growing evidence suggests that increased expression of acidic mammalian chitinase (AMCase) may play a role in the pathogenesis of asthma. In the present study, we sought to develop an RNA interference approach to suppress allergic asthma in mice through silencing of AMCase expression. Mice sensitized with ovalbumin (OVA) were intratracheally administered a recombinant adeno-associated virus expressing short hairpin RNA (rAAV-shRNA) against AMCase. In OVA-sensitized mice, the development of allergic symptoms was significantly associated with elevated AMCase expression. After administration of rAAV-shRNA, there was a significant reduction of AMCase expression in the lung and in bronchoalveolar lavage fluid (BALF) cells of sensitized mice. Sensitized mice receiving rAAV-shRNA showed a significant improvement in allergic symptoms, including airway hyperresponsiveness (AHR), eosinophil infiltration, eotaxin, interleukin-13 secretion in BALF, and serum OVA-specific IgE level. Our data suggest the hyperexpression of AMCase in asthma can be suppressed by rAAV-mediated shRNA. Silencing AMCase expression by shRNA may be a promising therapeutic strategy in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.