Unlike the major HBV surface antigen, LHBS is mostly expressed in the tumorous regions of HBV-induced HCC, indicating that it plays a unique role in tumor progression; the relative level of pre-S mutant in serum is, independently of tumor stage, an important high-risk marker for HCC recurrence after primary hepatic resection. (Hepatology 2018).
Hepatocellular carcinoma (HCC), a major cause of cancer-related death in Southeast Asia, is frequently associated with hepatitis B virus (HBV) infection. HBV X protein (HBx), encoded by a viral non-structural gene, is a multifunctional regulator in HBV-associated tumor development. We investigated novel signaling pathways underlying HBx-induced liver tumorigenesis and found that the signaling pathway involving IκB kinase β (IKKβ), tuberous sclerosis complex 1 (TSC1), and mammalian target of rapamycin (mTOR) downstream effector S6 kinase (S6K1), was upregulated when HBx was overexpressed in hepatoma cells. HBx-induced S6K1 activation was reversed by IKKβ inhibitor Bay 11-7082 or silencing IKKβ expression using siRNA. HBx upregulated cell proliferation and vascular endothelial growth factor (VEGF) production, and these HBx-upregulated phenotypes were abolished by treatment with IKKβ inhibitor Bay 11-7082 or mTOR inhibitor rapamycin. The association of HBx-modulated IKKβ/mTOR/S6K1 signaling with liver tumorigenesis was verified in a HBx transgenic mouse model in which pIKKβ, pS6K1, and VEGF expression was found to be higher in cancerous than non-cancerous liver tissues. Furthermore, we also found that pIKKβ levels were strongly correlated with pTSC1 and pS6K1 levels in HBV-associated hepatoma tissue specimens taken from 95 patients, and that higher pIKKβ, pTSC1, and pS6K1 levels were correlated with a poor prognosis in these patients. Taken together, our findings demonstrate that HBx deregulates TSC1/mTOR signaling through IKKβ, which is crucially linked to HBV-associated HCC development.
Statins are used widely to lower serum cholesterol and the incidence of cardiovascular diseases. Growing evidence shows that statins also exhibit beneficial effects against cancers. In this study, we investigated the molecular mechanisms involved in lovastatin-induced cell death in Fadu hypopharyngeal carcinoma cells. Lovastatin caused cell cycle arrest and apoptosis in FaDu cells. Lovastatin increased p21cip/Waf1 level while the survivin level was decreased in the presence of lovastatin. Survivin siRNA reduced cell viability and induced cell apoptosis in FaDu cells. Lovastatin induced phosphorylation of AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (MAPK) and transcription factor p63. Lovastatin also caused p63 acetylation and increased p63 binding to survivin promoter region in FaDu cells. AMPK-p38MAPK signaling blockade abrogated lovastatin-induced p63 phosphorylation. Lovastatin’s enhancing effect on p63 acetylation was reduced in HDAC3- or HDAC4- transfected cells. Moreover, transfection of cells with AMPK dominant negative mutant (AMPK-DN), HDAC3, HDAC4 or p63 siRNA significantly reduced lovastatin’s effects on p21cip/Waf1 and survivin. Furthermore, lovastatin inhibited subcutaneous FaDu xenografts growth in vivo. Taken together, lovastatin may activate AMPK-p38MAPK-p63-survivin cascade to cause FaDu cell death. This study establishes, at least in part, the signaling cascade by which lovastatin induces hypopharyngeal carcinoma cell death.
BACKGROUND AND PURPOSEHydroxamate derivatives have attracted considerable attention because of their broad pharmacological properties. Recent studies reported their potential use in the treatment of cardiovascular diseases, arthritis and infectious diseases. However, the mechanisms of the anti-inflammatory effects of hydroxamate derivatives remain to be elucidated. In an effort to develop a novel pharmacological agent that could suppress abnormally activated macrophages, we investigated a novel aliphatic hydroxamate derivative, WMJ-S-001, and explored its anti-inflammatory mechanisms. EXPERIMENTAL APPROACHRAW264.7 macrophages were exposed to LPS in the absence or presence of WMJ-S-001. COX-2 expression and signalling molecules activated by LPS were assessed. KEY RESULTSLPS-induced COX-2 expression was suppressed by WMJ-S-001. WMJ-S-001 inhibited p38MAPK, NF-κB subunit p65 and CCAAT/enhancer-binding protein (C/EBP)β phosphorylation in cells exposed to LPS. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced p65 and C/EBPβ phosphorylation and COX-2 expression. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was suppressed in the presence of WMJ-S-001. In addition, WMJ-S-001 suppression of p38MAPK, p65 and C/EBPβ phosphorylation, and subsequent COX-2 expression were restored in cells transfected with a dominant-negative (DN) mutant of MAPK phosphatase-1 (MKP-1). WMJ-S-001 also caused an increase in MKP-1 activity in RAW264.7 macrophages. CONCLUSIONS AND IMPLICATIONSWMJ-S-001 may activate MKP-1, which then dephosphorylates p38MAPK, resulting in a decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated RAW264.7 macrophages. The present study suggests that WMJ-S-001 may be a potential drug candidate for alleviating LPS-associated inflammatory diseases.
Upregulation of CTTN is critical for VEGF-C-mediated tumor growth and metastasis of ESCC. These finding suggest that VEGF-C upregulated CTTN expression through Src-mediated downregulation of miR-326. CTTN may be a crucial mediator of VEGF-C-involved ESCC metastasis, which provides a potential target for diagnosis and individualized treatment in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.