Fibrosis and fibroblast activation usually occur in the tissues surrounding a malignant tumor; therefore, anti-fibrotic drugs are used in addition to chemotherapy. A reliable technique for evaluating the combined effects of anti-fibrotic drugs and anticancer drugs would be beneficial for the development of an appropriate treatment strategy. In this study, we manufactured a three-dimensional (3D) co-culture system of fibroblasts and lung cancer cell spheroids in Matrigel supplemented with fibrin (fibrin/Matrigel) that simulated the tissue microenvironment around a solid tumor. We compared the efficacy of an anticancer drug (cisplatin) with or without pretreatments of two anti-fibrotic drugs, nintedanib and pirfenidone, on the growth and invasion of cancer cells co-cultured with fibroblasts. The results showed that the addition of nintedanib improved cisplatin's effects on suppressing the growth of cancer cell spheroids and the invasion of cancer cells. In contrast, pirfenidone did not enhance the anticancer activity of cisplatin. Nintedanib also showed higher efficacy than pirfenidone in reducing the expression of four genes in fibroblasts associated with cell adhesion, invasion, and extracellular matrix degradation. This study demonstrated that the 3D co-cultures in fibrin/Matrigel would be useful for assessing the effects of drug combinations on tumor growth and invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.