Background Accurate and robust pathological image analysis for colorectal cancer (CRC) diagnosis is time-consuming and knowledge-intensive, but is essential for CRC patients’ treatment. The current heavy workload of pathologists in clinics/hospitals may easily lead to unconscious misdiagnosis of CRC based on daily image analyses. Methods Based on a state-of-the-art transfer-learned deep convolutional neural network in artificial intelligence (AI), we proposed a novel patch aggregation strategy for clinic CRC diagnosis using weakly labeled pathological whole-slide image (WSI) patches. This approach was trained and validated using an unprecedented and enormously large number of 170,099 patches, > 14,680 WSIs, from > 9631 subjects that covered diverse and representative clinical cases from multi-independent-sources across China, the USA, and Germany. Results Our innovative AI tool consistently and nearly perfectly agreed with (average Kappa statistic 0.896) and even often better than most of the experienced expert pathologists when tested in diagnosing CRC WSIs from multicenters. The average area under the receiver operating characteristics curve (AUC) of AI was greater than that of the pathologists (0.988 vs 0.970) and achieved the best performance among the application of other AI methods to CRC diagnosis. Our AI-generated heatmap highlights the image regions of cancer tissue/cells. Conclusions This first-ever generalizable AI system can handle large amounts of WSIs consistently and robustly without potential bias due to fatigue commonly experienced by clinical pathologists. It will drastically alleviate the heavy clinical burden of daily pathology diagnosis and improve the treatment for CRC patients. This tool is generalizable to other cancer diagnosis based on image recognition.
Background Hepatocellular carcinoma (HCC), usually known as hepatoma, is the third leading cause of cancer mortality globally. Early detection of HCC helps in its treatment and increases survival rates. Objective The aim of this study is to develop a deep learning model, using the trend and severity of each medical event from the electronic health record to accurately predict the patients who will be diagnosed with HCC in 1 year. Methods Patients with HCC were screened out from the National Health Insurance Research Database of Taiwan between 1999 and 2013. To be included, the patients with HCC had to register as patients with cancer in the catastrophic illness file and had to be diagnosed as a patient with HCC in an inpatient admission. The control cases (non-HCC patients) were randomly sampled from the same database. We used age, gender, diagnosis code, drug code, and time information as the input variables of a convolution neural network model to predict those patients with HCC. We also inspected the highly weighted variables in the model and compared them to their odds ratio at HCC to understand how the predictive model works Results We included 47,945 individuals, 9553 of whom were patients with HCC. The area under the receiver operating curve (AUROC) of the model for predicting HCC risk 1 year in advance was 0.94 (95% CI 0.937-0.943), with a sensitivity of 0.869 and a specificity 0.865. The AUROC for predicting HCC patients 7 days, 6 months, 1 year, 2 years, and 3 years early were 0.96, 0.94, 0.94, 0.91, and 0.91, respectively. Conclusions The findings of this study show that the convolutional neural network model has immense potential to predict the risk of HCC 1 year in advance with minimal features available in the electronic health records.
BACKGROUND Hepatocellular carcinoma (HCC), usually known as hepatoma, is the third leading cause of cancer mortality globally. Early detection of HCC helps in its treatment and increases survival rates. OBJECTIVE The aim of this study is to develop a deep learning model, using the trend and severity of each medical event from the electronic health record to accurately predict the patients who will be diagnosed with HCC in 1 year. METHODS Patients with HCC were screened out from the National Health Insurance Research Database of Taiwan between 1999 and 2013. To be included, the patients with HCC had to register as patients with cancer in the catastrophic illness file and had to be diagnosed as a patient with HCC in an inpatient admission. The control cases (non-HCC patients) were randomly sampled from the same database. We used age, gender, diagnosis code, drug code, and time information as the input variables of a convolution neural network model to predict those patients with HCC. We also inspected the highly weighted variables in the model and compared them to their odds ratio at HCC to understand how the predictive model works RESULTS We included 47,945 individuals, 9553 of whom were patients with HCC. The area under the receiver operating curve (AUROC) of the model for predicting HCC risk 1 year in advance was 0.94 (95% CI 0.937-0.943), with a sensitivity of 0.869 and a specificity 0.865. The AUROC for predicting HCC patients 7 days, 6 months, 1 year, 2 years, and 3 years early were 0.96, 0.94, 0.94, 0.91, and 0.91, respectively. CONCLUSIONS The findings of this study show that the convolutional neural network model has immense potential to predict the risk of HCC 1 year in advance with minimal features available in the electronic health records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.