The integration of deep learning and theories of reinforcement learning (RL) is a promising avenue to explore novel hypotheses on reward-based learning and decision-making in humans and other animals. Here, we trained deep RL agents and mice in the same sensorimotor task with high-dimensional state and action space and studied representation learning in their respective neural networks. Evaluation of thousands of neural network models with extensive hyperparameter search revealed that learning-dependent enrichment of state-value and policy representations of the task-performance-optimized deep RL agent closely resembled neural activity of the posterior parietal cortex (PPC). These representations were critical for the task performance in both systems. PPC neurons also exhibited representations of the internally defined subgoal, a feature of deep RL algorithms postulated to improve sample efficiency. Such striking resemblance between the artificial and biological networks and their functional convergence in sensorimotor integration offers new opportunities to better understand respective intelligent systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.