Pyroelectric infrared sensors incorporating suspended zinc oxide (ZnO) pyroelectric films and thermally insulated silicon substrates are fabricated using conventional MEMS-based thin-film deposition, photolithography, and etching techniques. The responsivity of the pyroelectric films is improved through annealing at a temperature of 500 °C for 4 h. The temperature variation and voltage responsivity of the fabricated sensors are evaluated numerically and experimentally for substrate thickness in the range of 1 to 500 μm. The results show that the temperature variation and voltage responsivity both increase with a reducing substrate thickness. For the lowest film thickness of 1 μm, the sensor achieves a voltage sensitivity of 3880 mV/mW at a cutoff frequency of 400 Hz. In general, the results presented in this study provide a useful source of reference for the further development of MEMS-based pyroelectric infrared sensors.
A magnetic field measurement system based on an array of Hall sensors is proposed. The sensors are fabricated using conventional microelectromechanical systems (MEMS) techniques and consist of a P-type silicon substrate, a silicon dioxide isolation layer, a phosphide-doped cross-shaped detection zone, and gold signal leads. When placed within a magnetic field, the interaction between the local magnetic field produced by the working current and the external magnetic field generates a measurable Hall voltage from which the strength of the external magnetic field is then derived. Four Hall sensors are fabricated incorporating cross-shaped detection zones with an identical aspect ratio (2.625) but different sizes (S, M, L, and XL). For a given working current, the sensitivities and response times of the four devices are found to be almost the same. However, the offset voltage increases with the increasing size of the detection zone. A 3 × 3 array of sensors is assembled into a 3D-printed frame and used to determine the magnetic field distributions of a single magnet and a group of three magnets, respectively. The results show that the constructed 2D magnetic field contour maps accurately reproduce both the locations of the individual magnets and the distributions of the magnetic fields around them.
Infrared sensors incorporating suspended zinc oxide (ZnO) pyroelectric films and thermally-insulated silicon substrates are fabricated using conventional MEMS-based thin-film deposition, photolithography, and etching techniques. The responsivity of the pyroelectric film is improved through annealing at 500℃ for 4 h. The voltage response of the fabricated sensors is evaluated experimentally for a substrate thickness of 1 µm over a sensing range of 30 cm. The results show that the voltage signal varies as an inverse exponential function of the distance. A positioning system based on three infrared sensors is implemented in LabVIEW. It is shown that the position estimates obtained using the proposed system are in excellent agreement with the actual locations. In general, the results presented in this study provide a useful source of reference for the further development of MEMS-based pyroelectric infrared sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.