Our results suggest that G-CSF reduces optic ischemia-induced retinal cell loss, possibly through STAT3-regulated mobilization of hematopoietic progenitor cells to the retina.
Hyperhomocysteinemia is a risk factor for atherosclerosis, which may also be associated with retinal vascular disease, diabetic retinopathy, retinal vein occlusion, and glaucoma. For this study, we established a hyperhomocysteinemia animal model to explore homocysteine (hcy)-related choroidal angiogenesis and possible related factors. We injected Sprague Dawley (SD) rats with different concentrations of hcy and performed color fundus imaging, fluorescein angiography, image-guided optical coherence tomography, and retinal histology to observe the retinal and choroidal changes. Subsequently, we observed prominent choroidal vasculature with congested and tortuous retinal and choroidal vessels in fundus angiographies of the hyperhomocysteinemia animal model. In the histological study, the choroidal capillaries proliferated in the hcy-treated eyes, mimicking choroidal neovascularization. Disrupted retinal pigment epithelium (RPE), abnormal branching vascular network (BVN), and polyp-like structures were also observed in the hcy-treated eyes. Furthermore, we found that placental growth factor (PlGF), but not vascular epithelial growth factor (VEGF), was the key mediating factor of this phenomenon. Our findings suggest that hyperhomocysteinemia might cause choroidal angiogenesis.
Citation: Lee Y-J, Chiu C-C, Ke C-Y, Tien N, Lin P-K. Homocysteine facilitates prominent polygonal angiogenetic networks of a choroidal capillary sprouting model. Invest Ophthalmol Vis Sci. 2017;58:4332-4343. DOI: 10.1167/iovs.17-22308 PURPOSE. To investigate the effects of homocysteine on choroidal angiogenesis, we established an ex vivo choroidal sprouting explant model and examined the potential growth factors for angiogenesis.METHODS. Choroid fragments with retinal pigment epithelium were isolated from mouse and embedded in Matrigel. Homocysteine at different concentrations were added to the culture mediums. The choroidal explants were observed at different time points, and the total area of choroidal sprouting was measured and analyzed.RESULTS. Homocysteine evoked choroidal capillary sprouting by inducing capillary endothelial cell proliferation with pericyte formation and by facilitating polygonal angiogenetic networks. In some cases, vascular lumens were observed in the newly forming capillaries facilitated by homocysteine. The choroidal sprouting effect of homocysteine can only be observed at a certain range of homocysteine concentration, with 1-mM homocysteine exhibiting the most significantly increased choroidal sprouting areas. Isolectin overexpression was noted in the homocysteine-treated group. Possible growth factors for angiogenesis were detected through immunofluorescent staining, which demonstrated the overexpression of platelet-derived growth factor C and angiopoietin 1 in the homocysteine-treated preparations only. In these preparations, platelet-derived growth factor C was highly expressed in the tip cells of sprouting capillaries.CONCLUSIONS. We therefore conclude that platelet-derived growth factor C and angiopoietin 1 may play key roles in the choroid angiogenesis evoked by homocysteine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.