In modern society, air pollution is an important topic as this pollution exerts a critically bad influence on human health and the environment. Among air pollutants, Particulate Matter (PM2.5) consists of suspended particles with a diameter equal to or less than 2.5 μm. Sources of PM2.5 can be coal-fired power generation, smoke, or dusts. These suspended particles in the air can damage the respiratory and cardiovascular systems of the human body, which may further lead to other diseases such as asthma, lung cancer, or cardiovascular diseases. To monitor and estimate the PM2.5 concentration, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) are combined and applied to the PM2.5 forecasting system. To compare the overall performance of each algorithm, four measurement indexes, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) Pearson correlation coefficient and Index of Agreement (IA) are applied to the experiments in this paper. Compared with other machine learning methods, the experimental results showed that the forecasting accuracy of the proposed CNN-LSTM model (APNet) is verified to be the highest in this paper. For the CNN-LSTM model, its feasibility and practicability to forecast the PM2.5 concentration are also verified in this paper. The main contribution of this paper is to develop a deep neural network model that integrates the CNN and LSTM architectures, and through historical data such as cumulated hours of rain, cumulated wind speed and PM2.5 concentration. In the future, this study can also be applied to the prevention and control of PM2.5.
Abstract:One of the most important research topics in smart grid technology is load forecasting, because accuracy of load forecasting highly influences reliability of the smart grid systems. In the past, load forecasting was obtained by traditional analysis techniques such as time series analysis and linear regression. Since the load forecast focuses on aggregated electricity consumption patterns, researchers have recently integrated deep learning approaches with machine learning techniques. In this study, an accurate deep neural network algorithm for short-term load forecasting (STLF) is introduced. The forecasting performance of proposed algorithm is compared with performances of five artificial intelligence algorithms that are commonly used in load forecasting. The Mean Absolute Percentage Error (MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE) are used as accuracy evaluation indexes. The experiment results show that MAPE and CV-RMSE of proposed algorithm are 9.77% and 11.66%, respectively, displaying very high forecasting accuracy.
With the fast expansion of renewable energy system installed capacity in recent years, the availability, stability, and quality of smart grids have become increasingly important. The renewable energy output forecasting applications have also been developing rapidly in recent years, and such techniques have particularly been applied in the fields of wind and solar photovoltaic (PV). In the case of solar PV output forecasting, many applications have been performed with machine learning and hybrid techniques. In this paper, we propose a high-precision deep neural network model named PVPNet to forecast PV system output power. The methodology behind the proposed model is based on deep neural networks, and the model is able to generate a 24-h probabilistic and deterministic forecasting of PV power output based on meteorological information, such as temperature, solar radiation, and historical PV system output data. The forecasting accuracy of PVPNet is determined by the mean absolute error (MAE) and root mean square error (RMSE) values. The results from the experiments show that the MAE and RMSE of the proposed algorithm are 109.4845 and 163.1513, respectively. The results prove that the prediction accuracy of the PVPNet outperforms other benchmark models, and the algorithm also effectively predicts complex time series with a high degree of volatility and irregularity. INDEX TERMS Deep neural network, photovoltaic output power forecasting, photovoltaic system, renewable energy sources.
The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people. We report genome-wide data from 191 individuals from Mongolia, northern China, Taiwan, the Amur River Basin and Japan dating to 6000 BCE – 1000 CE, many from contexts never previously analyzed with ancient DNA. We also report 383 present-day individuals from 46 groups mostly from the Tibetan Plateau and southern China. We document how 6000-3600 BCE people of Mongolia and the Amur River Basin were from populations that expanded over Northeast Asia, likely dispersing the ancestors of Mongolic and Tungusic languages. In a time transect of 89 Mongolians, we reveal how Yamnaya steppe pastoralist spread from the west by 3300-2900 BCE in association with the Afanasievo culture, although we also document a boy buried in an Afanasievo barrow with ancestry entirely from local Mongolian hunter-gatherers, representing a unique case of someone of entirely non-Yamnaya ancestry interred in this way. The second spread of Yamnaya-derived ancestry came via groups that harbored about a third of their ancestry from European farmers, which nearly completely displaced unmixed Yamnaya-related lineages in Mongolia in the second millennium BCE, but did not replace Afanasievo lineages in western China where Afanasievo ancestry persisted, plausibly acting as the source of the early-splitting Tocharian branch of Indo-European languages. Analyzing 20 Yellow River Basin farmers dating to ∼3000 BCE, we document a population that was a plausible vector for the spread of Sino-Tibetan languages both to the Tibetan Plateau and to the central plain where they mixed with southern agriculturalists to form the ancestors of Han Chinese. We show that the individuals in a time transect of 52 ancient Taiwan individuals spanning at least 1400 BCE to 600 CE were consistent with being nearly direct descendants of Yangtze Valley first farmers who likely spread Austronesian, Tai-Kadai and Austroasiatic languages across Southeast and South Asia and mixing with the people they encountered, contributing to a four-fold reduction of genetic differentiation during the emergence of complex societies. We finally report data from Jomon hunter-gatherers from Japan who harbored one of the earliest splitting branches of East Eurasian variation, and show an affinity among Jomon, Amur River Basin, ancient Taiwan, and Austronesian-speakers, as expected for ancestry if they all had contributions from a Late Pleistocene coastal route migration to East Asia.
Electricity price is a key influencer in the electricity market. Electricity market trades by each participant are based on electricity price. The electricity price adjusted with the change in supply and demand relationship can reflect the real value of electricity in the transaction process. However, for the power generating party, bidding strategy determines the level of profit, and the accurate prediction of electricity price could make it possible to determine a more accurate bidding price. This cannot only reduce transaction risk, but also seize opportunities in the electricity market. In order to effectively estimate electricity price, this paper proposes an electricity price forecasting system based on the combination of 2 deep neural networks, the Convolutional Neural Network (CNN) and the Long Short Term Memory (LSTM). In order to compare the overall performance of each algorithm, the Mean Absolute Error (MAE) and Root-Mean-Square error (RMSE) evaluating measures were applied in the experiments of this paper. Experiment results show that compared with other traditional machine learning methods, the prediction performance of the estimating model proposed in this paper is proven to be the best. By combining the CNN and LSTM models, the feasibility and practicality of electricity price prediction is also confirmed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.