Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.
The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation.Trial RegistrationClinicalTrials.gov NCT01360567
Polydopamine (pDA) coatings afford tremendous versatility due to their capabilities to provide substrate-independent functionalization with a wide range of amine- and thiol-containing molecules. In this work, we developed a new and facile conjugation approach to the formation of β-amino carbonyl linkages between pDA and acrylate/acrylamide molecules via the aza-Michael reaction. Sulfobetaine acrylamide (SBAA), sulfobetaine methacrylate (SBMA), and poly(ethylene glycol) methacrylate (PEGMA) were employed to graft onto pDA films, giving rise to formation of antifouling coatings. Because of the universal adhesive property of pDA, the coating strategy was applied to different substrates, including TiO2, gold, SiO2, Nitinol alloy, polystyrene, and poly(dimethylsiloxane). The variation of surface chemistry and surface wettability upon pDA modification and subsequent conjugation was monitored with X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Antifouling properties of coatings were challenged by three common Gram-negative and Gram-positive bacteria. Cytocompatibility of the coatings with NIH-3T3 fibroblasts was accessed using MTT assay. The results showed that pDA coatings grafted with SBAA exhibited superhydrophilicity and excellent fouling resistance likely due to the high chemical reactivity of acrylamide, leading to high grafting density. In addition, dual functional coatings containing passive and active antibacterial components were constructed through the in situ deposition of antimicrobial agent, silver nanoparticles, in pDA, followed by the grafting of SBAA for bacterial repellence. The composite coatings allowed reducing adsorption of E. coli by >95%, while killing attached bacteria by up to 98% upon the releasing of Ag(+) ions as measured by inductively coupled plasma mass spectrometry. Consequently, this work paves a new avenue to the grafting strategy to engineer pDA and to the functional bioinspired antifouling interfaces in a substrate-independent fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.