The study presents a non-isolated bidirectional DC-DC converter, which has simple circuit structure. The control strategy is easily implemented. Also, the synchronous rectifier technique is used to reduce the losses. The voltage gain of the proposed converter is the half and the double of the conventional bidirectional DC-DC buck/boost converter in the step-down and step-up modes, respectively. Therefore the proposed converter can be operated in wide-voltage-conversion range than the conventional bidirectional converter. The voltage stresses on the switches of the proposed converter are a half of the highvoltage side. In addition, the operating principle and steady-state analyses are discussed. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.
The goal of this study was to design a robot system for assisting in the rehabilitation of patients with neuromuscular disorders by performing various facilitation movements. The robot should be able to guide patient's wrist to move along planned linear or circular trajectories. A hybrid position/force controller incorporating fuzzy logic was developed to constrain the movement in the desired direction and to maintain a constant force along the moving direction. The controller was stable in the application range of movements and forces. Offline analyses of data were used to quantitatively assess the progress of rehabilitation. The results show that the robot could guide the upper limbs of subjects in linear and circular movements under predefined external force levels and apply a desired force along the tangential direction of the movements.
Climate change has increased the incidence of coral bleaching events, resulting in the loss of ecosystem function and biodiversity on reefs around the world. As reef degradation accelerates, the need for innovative restoration tools has become acute. Despite past successes with ultra-low temperature storage of coral sperm to conserve genetic diversity, cryopreservation of larvae has remained elusive due to their large volume, membrane complexity, and sensitivity to chilling injury. Here we show for the first time that coral larvae can survive cryopreservation and resume swimming after warming. Vitrification in a 3.5 M cryoprotectant solution (10% v/v propylene glycol, 5% v/v dimethyl sulfoxide, and 1 M trehalose in phosphate buffered saline) followed by warming at a rate of approximately 4,500,000 °C/min with an infrared laser resulted in up to 43% survival of Fungia scutaria larvae on day 2 post-fertilization. Surviving larvae swam and continued to develop for at least 12 hours after laser-warming. This technology will enable biobanking of coral larvae to secure biodiversity, and, if managed in a high-throughput manner where millions of larvae in a species are frozen at one time, could become an invaluable research and conservation tool to help restore and diversify wild reef habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.