The Japan Meteorological Agency (JMA) conducted the second Japanese global atmospheric reanalysis, called the Japanese 55-year Reanalysis or JRA-55. It covers the period from 1958, when regular radiosonde observations began on a global basis. JRA-55 is the first comprehensive reanalysis that has covered the last half-century since the European Centre for Medium-Range Weather Forecasts 45-year Reanalysis (ERA-40), and is the first one to apply four-dimensional variational analysis to this period. The main objectives of JRA-55 were to address issues found in previous reanalyses and to produce a comprehensive atmospheric dataset suitable for studying multidecadal variability and climate change. This paper describes the observations, data assimilation system, and forecast model used to produce JRA-55 as well as the basic characteristics of the JRA-55 product.JRA-55 has been produced with the TL319 version of JMA's operational data assimilation system as of December 2009, which was extensively improved since the Japanese 25-year Reanalysis (JRA-25). It also uses several newly available and improved past observations. The resulting reanalysis products are considerably better than the JRA-25 product. Two major problems of JRA-25 were a cold bias in the lower stratosphere, which has been diminished, and a dry bias in the Amazon basin, which has been mitigated. The temporal consistency of temperature analysis has also been considerably improved compared to previous reanalysis products. Our initial quality evaluation revealed problems such as a warm bias in the upper troposphere, large upward imbalance in the global mean net energy fluxes at the top of the atmosphere and at the surface, excessive precipitation over the tropics, and unrealistic trends in analyzed tropical cyclone strength. This paper also assesses the impacts of model biases and changes in the observing system, and mentions efforts to further investigate the representation of low-frequency variability and trends in JRA-55.
The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue “The SPARC Reanalysis Intercomparison Project (S-RIP)” in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports
The Japan Meteorological Agency (JMA) started the second Japanese global atmospheric reanalysis project named the Japanese 55-year Reanalysis (JRA-55). It covers 55 years, extending back to 1958, when the global radiosonde observing system was established. Many of the deficiencies found in the first Japanese reanalysis, the Japanese 25-year Reanalysis (JRA-25), have been improved. It aims at providing a comprehensive atmospheric dataset that is suitable for studies of climate change or multi-decadal variability, by producing a more time-consistent dataset for a longer period than JRA-25.Production of JRA-55 started in 2010, and computations for more than 16 years have been completed as of August 2011. The entire JRA-55 production will be completed in early 2013 and thereafter JRA-55 will be continued as a new JCDAS on real time basis. This paper is a brief report to introduce the JRA-55 reanalysis project. The data assimilation and prediction (DA) system used in JRA-55 is introduced and compared to that used in JRA-25. Early results of JRA-55 are presented and discussed, showing general improvements.
This study investigates the quality of the Japanese 55-year Reanalysis (JRA-55), which is the second global reanalysis constructed by the Japan Meteorological Agency (JMA), by comparing it with other reanalyses and observational datasets. Improvements were found in the representation of atmospheric circulation on an isentropic surface and in the consistency of momentum budget based on the mass-weighted isentropic zonal mean method. The representation of climate variability in several regions was also examined. In the tropics, the frequencies of high spatial correlations with precipitation, which were estimated using the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis, are clearly higher in JRA-55 than in JRA-25. The results indicate that JRA-55 generally improved the representations of phenomena on a wide range of space-time scales, such as equatorial waves, and transient eddies in the storm track regions, compared with JRA-25 during the satellite era. Moreover, JRA-55 improved the temporal consistency compared with the older reanalyses throughout the reanalysis period. In the stratosphere, we found larger discrepancies between reanalyses for the extra-tropical stratosphere during the Southern Hemisphere (SH) winter. Comparisons with radiosonde temperature revealed that JRA-55 has a smaller bias in temperature than the other reanalyses in the extra-tropical SH winter before 1979.Some issues in JRA-55 were also identified. The amplitude of equatorial waves and Madden-Julian oscillation in JRA-55 are weaker than in the other reanalyses. JRA-55 shows unrealistic strong cooling in South America and Australia, although the spatial distribution of the long-term temperature trends in JRA-55 is the closest to an observational dataset of global historical surface temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.