Objective: The first aim of this study was to determine the performance of a deep learning object detection technique in the detection of maxillary sinuses on panoramic radiographs. The second aim was to clarify the performance in the classification of maxillary sinus lesions compared with healthy maxillary sinuses. Methods: The imaging data for healthy maxillary sinuses (587 sinuses, Class 0), inflamed maxillary sinuses (416 sinuses, Class 1), cysts of maxillary sinus regions (171 sinuses, Class 2) were assigned to training, testing 1, and testing two datasets.Alearning process of 1000 epochs with the training images and labelswas performed using DetectNet, and a learning model was created. The testing 1 and testing two images were applied to the model, and the detection sensitivities and the false-positive rates per image were calculated. The accuracies, sensitivities and specificities were determined for distinguishing the inflammation group (Class 1) and cyst group (Class 2) with respect to the healthy group (Class 0). Results: Detection sensitivities of healthy (Class 0) and inflamed (Class 1) maxillary sinuses were 100% for both testing 1 and testing two datasets, whereas they were 98 and 89% for cysts of the maxillary sinus regions (Class 2). False-positive rates per image were nearly 0.00. Accuracies, sensitivities and specificities for diagnosis maxillary sinusitis were 90–91%, 88–85%, and 91–96%, respectively; for cysts of the maxillary sinus regions, these values were 97–100%, 80–100%, and 100–100%, respectively. Conclusion: Deep learning could reliably detect the maxillary sinuses and identify maxillary sinusitis and cysts of the maxillary sinus regions. Advances in knowledge: This study using a deep leaning object detection technique indicated that the detection sensitivities of maxillary sinuses were high and the performance of maxillary sinus lesion identification was ≧80%.In particular, performance of sinusitis identification was ≧90%.
Objectives: We evaluated the diagnostic performance of a deep learning system for the detection of Sjögren’s syndrome (SjS) in ultrasonography (US) images, and compared it with the performance of inexperienced radiologists. Methods: 100 patients with a confirmed diagnosis of SjS according to both the Japanese criteria and American-European Consensus Group criteria and 100 non-SjS patients that had a dry mouth and suspected SjS but were definitively diagnosed as non-SjS were enrolled in this study. All the patients underwent US scans of both the parotid glands (PG) and submandibular glands (SMG). The training group consisted of 80 SjS patients and 80 non-SjS patients, whereas the test group consisted of 20 SjS patients and 20 non-SjS patients for deep learning analysis. The performance of the deep learning system for diagnosing SjS from the US images was compared with the diagnoses made by three inexperienced radiologists. Results: The accuracy, sensitivity and specificity of the deep learning system for the PG were 89.5, 90.0 and 89.0%, respectively, and those for the inexperienced radiologists were 76.7, 67.0 and 86.3%, respectively. The deep learning system results for the SMG were 84.0, 81.0 and 87.0%, respectively, and those for the inexperienced radiologists were 72.0, 78.0 and 66.0%, respectively. The AUC for the inexperienced radiologists was significantly different from that of the deep learning system. Conclusions: The deep learning system had a high diagnostic ability for SjS. This suggests that deep learning could be used for diagnostic support when interpreting US images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.