Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution.
Tetrahydropapaveroline (THP), a benzylisoquinoline alkaloid (BIA) found in diverse pharmaceutical compounds, is used as a starting material for the production of BIA. THP also has various neurobiological properties but is difficult to synthesize. Therefore, a simple method for THP production is desired. Recent studies have shown that microbes, especially bacteria, can serve as platforms for synthesizing these complex compounds; however, because bacteria lack organelles, the designed synthetic pathway cannot be compartmentalized. Thus, the metabolic flow is frequently inhibited or disrupted by undesirable reactions. Indeed, in the first attempt to synthesize THP using a single strain of engineered Escherichia coli, the yield was quite low (<5 μM), mainly because of the oxidation of THP by tyrosinase, an essential enzyme in our production system. To circumvent these problems, we constructed a stepwise (R,S)-THP production system, in which the dopamine-producing step and the subsequent THP-producing step were separated. The yield of (R,S)-THP reached 1.0 mM (287 mg/L), the highest yielding BIA production method using a microbe reported to date. Furthermore, we demonstrated that (R,S)-THP produced by stepwise fermentation is useful for the production of reticuline, an important BIAs intermediate. Based on these observations, applying the stepwise fermentation method is discussed.
Leuconostoc mesenteroides strain NTM048 has been shown to have intestinal IgA-inducing ability. In this study, we investigated the immunostimulant potency of an exopolysaccharide secreted from strain NTM048 (NTM048 EPS) in vitro and in vivo in a murine model. NTM048 EPS ranges in size from 10 to 40 kDa and is speculated to be mainly composed of glucose and fructose. The in vitro study revealed that NTM048 EPS induced total and antigen-specific IgA production by Peyer's patch cells and influenced Th1 and Th2 cell-mediated response in splenocytes. Oral administration of NTM048 EPS dose-dependently induced fecal IgA production accompanied by the up-regulation of retinoic acid synthase and transforming growth factor-β receptor genes in Peyer's patch cells. Flow cytometric analysis of the splenocytes revealed an increase of the CD3+ T-cell population and the ratio of CD4+ T-cells/CD8+ T-cells. These results indicate that NTM048 EPS could enhance the mucosal barrier and influence the systemic immune response.
Aims: The present work was aimed to find novel probiotics to enhance the mucosal barrier function of humans. The effectiveness was evaluated in vitro and in vivo. Methods and Results: Stimulation of IgA production in mucosal surfaces is one of the most beneficial traits of lactic acid bacteria (LAB) for enhancing the barrier. Therefore, 173 LAB strains were evaluated for the ability to induce IgA production using murine Peyer's patch cells. Strain NTM048 isolated from green peas showed the highest activity and was identified as Leuconostoc mesenteroides subsp. mesenteroides. This strain was found to tolerate gastrointestinal digestion and produce large amounts of exopolysaccharides, which possess IgA-inducing activity. Dietary supplementation with NTM048 induced a significant increase in the faecal IgA content and plasma IgA levels of BALB/cA mice. A gene expression analysis of Peyer's patch cells revealed that the transforming growth factor-b and activation-induced cytidine deaminase genes were upregulated by NTM048 intake. Conclusions: Strain NTM048 stimulates Peyer's patch cells to induce intestinal and systemic immune response, revealing the potential of NTM048 as a probiotic for enhancing the mucosal barrier function. Significance and Impact of the Study: This report demonstrates a foodapplicable Leuconostoc mesenteroides strain secreting exopolysaccharide that shows high IgA-inducing ability.
Sargassum horneri (Turner) C. Agardh (S. horneri) is edible brown seaweed that grows along the coast of East Asia and has been traditionally used as a folk medicine and a local food. In this study, we evaluated the effects of S. horneri on the development of obesity and related metabolic disorders in C57BL/6J mice fed a high-fat diet. S. horneri was freeze-dried, fine-powdered, and mixed with a high-fat diet at a weight ratio of 2% or 6%. Feeding a high-fat diet to mice for 13 weeks induced obesity, diabetes, hepatic steatosis, and hypercholesterolemia. Supplementation of mice with S. horneri suppressed high-fat diet-induced body weight gain and the accumulation of fat in adipose tissue and liver, and the elevation of the serum glucose level. In addition, S. horneri improved insulin resistance. An analysis of the feces showed that S. horneri stimulated the fecal excretion of triglyceride, as well as increased the fecal polysaccharide content. Furthermore, extracts of S. horneri inhibited the activity of pancreatic lipase in vitro. These results showed that S. horneri can ameliorate diet-induced metabolic diseases, and the effect may be partly associated with the suppression of intestinal fat absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.