High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein that is secreted into the extracellular milieu in response to inflammatory stimuli. The secreted HMGB1 mediates various inflammatory diseases, including periodontitis; however, the underlying mechanisms of HMGB1-induced periodontal inflammation are not completely understood. Here, we examined whether anti-HMGB1 neutralizing antibody inhibits periodontal progression and investigated the molecular pathology of HMGB1 and analysis indicated that HMGB1, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-1β (IL-1β) were secreted in response to tumor necrosis factor-α (TNF-α) stimuli in human gingival epithelial cells (HGECs) and human monocytic leukemia cells (THP-1) treated with phorbol myristate acetate. Increased levels of GM-CSF and IL-1β were observed in the conditioned media from TNF-α-stimulated HGECs and THP-1 Simultaneous stimulation with TNF-α and anti-HMGB1 antibody significantly decreased TNF-α-induced inflammatory cytokine secretion. Experimental periodontitis was induced in mice using-soaked ligatures. The extracellular translocation was confirmed in gingival epithelia in the periodontitis model mice by immunofluorescence analysis. Systemic administration of anti-HMGB1 neutralizing antibody significantly inhibited translocation of HMGB1. The anti-HMGB1 antibody inhibited periodontal inflammation, expression of IL-1β and C-X-C motif chemokine ligand 1 (CXCL1), migration of neutrophils, and bone resorption, shown by bioluminescence imaging of myeloperoxidase activity, quantitative reverse transcription-PCR (RT-PCR), and micro-computed tomography analysis. These findings indicate that HMGB1 is secreted in response to inflammatory stimuli caused by periodontal infection, which is crucial for the initiation of periodontitis, and the anti-HMGB1 antibody attenuates the secretion of a series of inflammatory cytokines, consequently suppressing the progression of periodontitis.
The recruitment of tissue‐resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin‐mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet‐derived growth factor‐BB (PDGF‐BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up‐regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti‐integrin α5 antibodies inhibited PDL cell migration. Treatment with anti‐integrin α3, α3‐blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF‐BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3‐mediated inhibition and α5‐mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about 30 kDa. It is released from a variety of cells into the extracellular milieu in response to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or without forming a complex with other molecules. HMGB1 mediates various mechanisms such as inflammation, cell migration, proliferation, and differentiation. On the other hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand (CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1 induces pro-inflammatory cytokine expression, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which prolong inflammation. In contrast, wound healing after tooth extraction or titanium dental implant osseointegration requires an initial acute inflammation, which is regulated by secreted HMGB1. This indicates that secreted HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by comparing its function and regulation with its function in other diseases. We also discuss the necessity for further studies in this field to provide more specific scientific evidence for dentistry.
Molecular imaging analysis based on MPO activity has potential as a diagnostic tool for periodontitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.