For many years, research on the microbial-dissolution of metals from ores or waste materials mainly focussed on the study of acidophilic organisms. However, most acidophilic bioleaching microorganisms have limited tolerance to high chloride concentrations, thereby requiring fresh water for bioleaching operations. There is a growing interest in the use of seawater for leaching purposes, especially in regions with less access to fresh water. Consequently, there is a need to find halophilic organisms with bioleaching potentials. This study investigated the bioleaching potentials of four moderately halophilic sulphur-oxidising bacteria: Thiomicrospira cyclica, Thiohalobacter thiocyanaticus, Thioclava electrotropha and Thioclava pacifica. Results revealed T. electrotropha and T. pacifica as the most promising for bioleaching. Pure cultures of the two Thioclava strains liberated about 30% Co, and between 8–17% Cu, Pb, Zn, K, Cd, and Mn from a mine waste rock sample from the Neves Corvo mine, Portugal. Microwave roasting of the waste rock at 400 and 500 °C improved the bioleaching efficiency of T. electrotropha for Pb (13.7 to 45.7%), Ag (5.3 to 36%) and In (0 to 27.4%). Mineralogical analysis of the bioleached residues using SEM/MLA-GXMAP showed no major difference in the mineral compositions before or after bioleaching by the Thioclava spp. Generally, the bioleaching rates of the Thioclava spp. are quite low compared to that of the conventional acidophilic bioleaching bacteria. Nevertheless, their ability to liberate potential pollutants (metal(loid)s) into solution from mine waste raises environmental concerns. This is due to their relevance in the biogeochemistry of mine waste dumps, as similar neutrophile halophilic sulphur-oxidising organisms (e.g., Halothiobacillus spp.) have been isolated from mine wastes. On the other hand, the use of competent halophilic microorganisms could be the future of bioleaching due to their high tolerance to Cl- ions and their potential to catalyse mineral dissolution in seawater media, instead of fresh water.
Mine waste can constitute an environmental hazard, especially when poorly managed. Environmental assessment is essential for estimating potential threats and optimizing mine waste management. This study evaluated the potential environmental risk of sulfidic mine waste samples originating from the Neves Corvo Mine, Portugal, and the closed Freiberg mining district, Germany. Metal(loid)s in the waste samples were partitioned into seven operationally defined fractions using the Zeien and Brummer sequential extraction scheme. The results showed similar partitioning patterns for the elements in the waste rock and tailing samples from Neves Corvo Mine; most metal(loid)s showed lower mobility, as they were mainly residual-bound. On the contrary, the Freiberg tailing sample had considerably elevated (24–37%) mobile fractions of Zn, Co, Cd, and Mn. The majority of Fe (83–96%) in all samples was retained in the residual fractions, while Ca was highly mobile. Overall, Pb was the most mobile toxic element in the three samples. A large portion of Pb (32–57%) was predominantly found in the most mobilizable fractions of the studied waste samples. This study revealed that the three mine wastes have contamination potential for Pb and Zn, which can be easily released into the environment from these waste sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.