Predictive algorithms are important tools for translating genomic data into meaningful functional annotations. In this work, we benchmarked the performance of eight prediction methods using a set of strictly pharmacogenetic variants. We first compiled a set of damaging or neutral variants that affected pharmacogenes from two online databases. We then cross-checked their functional impacts against the predictions given by the chosen tools. Of the eight methods, SIFT (Sorting Intolerant From Tolerant), Mutation Assessor, and CADD (Combined Annotation Dependent Depletion) were the top performers in predicting the functional relevance of a variant. The performance of SIFT surpassed that of CADD despite its much simpler algorithm, correctly identifying 66.91% of the damaging variants and 84.38% of the neutral variants. SIFT assumes that important DNA bases within a gene are conserved and not amenable to substitution. Overall, none of the prediction methods struck a balance between sensitivity and specificity. For instance, we noted that CADD was very sensitive in detecting the damaging variants (89.21%); however, it also mispredicted a large fraction of the neutral variants (43.75%). We then trialled a consensus approach whereby the functional significance of a variant is defined by agreement between at least three prediction methods. The approach performed better than all the tools deployed alone, detecting 84.17% of the deleterious variants and 70.97% of the neutral variants. A prediction method that integrates an assortment of algorithms, each assigned an empirically optimised weighting, may be established in the future for the functional assessment of pharmacogenetic variants. ABSTRAKAlgoritma ramalan merupakan alat yang penting dalam menterjemahkan data genom kepada anotasi fungsian yang lebih bermakna. Dalam kajian ini, kami menilai prestasi lapan kaedah ramalan dalam mengenal pasti kesan fungsian varian farmakogenetik. Kami mengumpulkan varian farmakogenetik yang neutral atau merosakkan fungsi protein daripada dua pangkalan data atas talian. Kemudian, kami membandingkan kesan fungsian setiap varian tersebut dengan ramalan yang dijanakan oleh kaedah yang terpilih. Daripada lapan kaedah tersebut, SIFT (Sorting Intolerant From Tolerant, atau Mengasingkan Varian Mudarat Daripada Varian Neutral), Mutation Assessor dan CADD (Combined Annotation Dependent Depletion, atau Kesusutan Bersandarkan Anotasi Gabungan) adalah terbaik dalam menentukan kesan fungsian sesuatu varian farmakogenetik. SIFT mencapai prestasi yang lebih baik daripada CADD walaupun algoritmanya lebih ringkas. Kaedah tersebut dapat mengenal pasti 66.91% varian yang mencacatkan fungsi protein dan 84.38% varian neutral. Ramalan SIFT adalah berasaskan anggapan bahawa bes DNA yang penting dalam sesuatu gen adalah terabadi dan tidak boleh ditukar ganti. Secara keseluruhan, tiada kaedah ramalan mencapai keseimbangan antara kepekaan dan kekhususan diagnostik. Contohnya, kami mendapati bahawa CADD sangat sensitif dalam mengesankan varian mudarat (89.21%); t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.