Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung.
The human glioblastoma SF268 cell line was used to investigate the induction of apoptosis by the 3C protease of enterovirus 71 (EV71). Transient expression in these cells of the wild-type 3C protein encoded by EV71 induced morphological alterations typical of apoptosis, including generation of apoptotic bodies. Degradation of cellular DNA in nucleosomes was also observed. When two of the amino acids in the catalytic motif of 3C were changed by mutagenesis, the 3C protein not only lost its proteolytic activity, but also its ability to induce apoptosis in the SF268 cells. Twenty-four hours after 3C transfection, poly(ADP-ribose) polymerase, a DNA repair enzyme, was cleaved, indicating that caspases were activated by the expression of EV71 3C. The 3C-induced apoptosis was blocked by the caspase inhibitors DEVD-fmk and VAD-fmk. Our findings suggest that the proteolytic activity of 3C triggers apoptosis in the SF268 cells through a mechanism involving caspase activation and that this apoptotic pathway may play an important role in the pathogenesis of EV71 infection.
Studies in B cell-deficient mice generated by continuous injection of anti-mu antibodies (muSM) showed that T cell priming in lymph nodes was dependent on antigen presentation by B cells. This concept has recently become controversial since a wide range, from complete deficiency to near normal T cell responses, was reported in studies carried out with B cell-deficient mice generated by gene disruption (muMT). In this study we show that in the absence of B cells, T cell responses are greatly reduced in all the available muMT mouse strains although responses in muMT of the C57BL/6 background (which were used for most studies with muMT) were much more variable and could reach up to 42% of control. In contrast, T cell responses in muMT --> F(1) bone marrow chimeras which have the same phenotype as muMT were totally impaired, suggesting a principle difference between mice developing without B cells (muMT mice) and muSM which are made B cell deficient only after birth. Normal T cell priming was completely restored by reconstitution of muMT and muMT --> F(1) mice with syngeneic B cells. Interestingly, only B cell populations containing antigen-specific B cells were capable of reconstituting T cell responses. Monoclonal B cells taken from Ig transgenic mice could not reconstitute responses to an irrelevant antigen. We also found that B cells were also required for systemic T cell priming when antigen concentrations were limiting but were not required for priming (for T cell help) when mice were immunized with a high antigen dose.
Leishmaniasis is a major tropical disease for which current chemotherapies, pentavalent antimonials, are inadequate and cause severe side effects. It has been reported that trifluralin, a microtubule-disrupting herbicide, is inhibitory to Leishmania amazonensis. In this study, the in vitro effect of trifluralin on different species of trypanosomatid protozoans was determined. In addition to L. amazonensis, trifluralin is effective against Leishmania major and Leishmania tropica, which cause cutaneous infections, Leishmania donovani, which causes visceral disease, Leishmania panamensis, which may cause mucocutaneous infection, and Trypanosoma brucei, an important human and veterinary pathogen. Moreover, most encouragingly, trifluralin is effective in vivo as a topical ointment against L. major and Leishmania mexicana murine cutaneous leishmaniasis. Thus, trifluralin is a promising lead drug for several related, prevalent tropical diseases: leishmaniasis, trypanosomiasis of animals, and, possibly, African trypanosomiasis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.