Given a partial image input, image outpainting is to produce the desirable output by recovering or extending the surrounding image regions. While existing image outpainting methods achieve impressive results based on the recent advances of deep learning, they either lack the ability to extend image regions in arbitrary directions or require the filling image margins to be given in advance. To address this challenging task, we propose a unique deep learning framework for robust image outpainting, which consists of a margin prediction network and a teacher-student-based network for producing outpainted images. Our proposed model does not require image filling margins to be known beforehand, while both image appearance and perceptual feature consistencies can be jointly enforced. Our experiments quantitatively and qualitatively verify the effectiveness of our method, which is shown to perform favorably against baseline and state-of-the-art image outpainting works.
This paper proposes a novel loss, soft ranking threshold loss, for driving deep networks to learn better representations for image retrieval. Instead of working in the metric space, our loss works in the rank space which has a more uniform distribution and explicit scale and bounds. Our loss reduces the ranks of the distances between anchor-positive pairs below the threshold while increasing the ones between anchornegative pairs above the threshold. In addition to the basic form, two extensions are proposed for improving the effectiveness: hard thresholds and ranking margin. Experiments show that the proposed loss outperforms the state-of-the-art losses on image retrieval applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.