Background and Purpose-Intracerebral hemorrhage (ICH) is associated with high mortality and neurological deficits, and concurrent hyperglycemia usually worsens clinical outcomes. Aquaporin-4 (AQP-4) is important in cerebral water movement. Our aim was to investigate the role of AQP-4 in hyperglycemic ICH. Methods-Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg) in adult SpragueDawley male rats. ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. One set of rats was repeatedly monitored by MRI at 1, 4, and 7 days after ICH induction so as to acquire information on the formation of hematoma and edema. Another set of rats was killed and brains were examined for differences in the degree of hemorrhage and edema, water content, blood-brain barrier destruction, and AQP-4 expression. Results-Hyperglycemia ICH rats exhibited increased brain water content, more severe blood-brain barrier destruction, and greater vasogenic edema as seen on diffusion-weighted MRI. Significant downregulation of AQP-4 was observed in STZ-treated rats after ICH as compared with non-STZ-treated rats. Apoptosis was greater on day 1 after ICH in STZtreated rats. Conclusions-The expression of AQP-4 in the brain is downregulated in hyperglycemic rats as compared with normoglycemic rats after ICH. This change is accompanied by increased vasogenic brain edema and more severe blood-brain barrier destruction. (Stroke. 2013;44:1682-1689.)
Nociceptive neuronal activation in subcortical regions has not been well investigated in functional magnetic resonance imaging (fMRI) studies. The present report aimed to use the blood oxygenation level-dependent (BOLD) fMRI technique to map nociceptive responses in both subcortical and cortical regions by employing a refined data processing method, the atlas registration-based event-related (ARBER) analysis technique. During fMRI acquisition, 5% formalin (50 mul) was injected into the left hindpaw to induce nociception. ARBER was then used to normalize the data among rats, and images were analyzed using automatic selection of the atlas-based region of interest. It was found that formalin-induced nociceptive processing increased BOLD signals in both cortical and subcortical regions. The cortical activation was distributed over the cingulate, motor, somatosensory, insular, and visual cortices, and the subcortical activation involved the caudate putamen, hippocampus, periaqueductal gray, superior colliculus, thalamus, and hypothalamus. With the aid of ARBER, the present study revealed a detailed activation pattern that possibly indicated the recruitment of various parts of the nociceptive system. The results also demonstrated the utilization of ARBER in establishing an fMRI-based whole-brain nociceptive map. The formalin induced nociceptive images may serve as a template of central nociceptive responses, which can facilitate the future use of fMRI in evaluation of new drugs and preclinical therapies for pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.