Parkinson’s disease is a progressive neurodegenerative disorder that has a higher probability of occurrence in middle-aged and older adults than in the young. With the use of a computer-aided diagnosis (CAD) system, abnormal cell regions can be identified, and this identification can help medical personnel to evaluate the chance of disease. This study proposes a hierarchical correlation histogram analysis based on the grayscale distribution degree of pixel intensity by constructing a correlation histogram, that can improves the adaptive contrast enhancement for specific objects. The proposed method produces significant results during contrast enhancement preprocessing and facilitates subsequent CAD processes, thereby reducing recognition time and improving accuracy. The experimental results show that the proposed method is superior to existing methods by using two estimation image quantitative methods of PSNR and average gradient values. Furthermore, the edge information pertaining to specific cells can effectively increase the accuracy of the results.
Purpose Prostate cancer (PCa) is a major health concern in aging males, and proper management of the disease depends on accurately interpreting pathology specimens. However, reading prostatectomy histopathology slides, which is basically for staging, is usually time consuming and differs from reading small biopsy specimens, which is mainly used for diagnosis. Generally, each prostatectomy specimen generates tens of large tissue sections and for each section, the malignant region needs to be delineated to assess the amount of tumor and its burden. With the aim of reducing the workload of pathologists, in this study, we focus on developing a computer‐aided diagnosis (CAD) system based on a densely connected convolutional neural network (DenseNet) for whole‐slide histopathology images to outline the malignant regions. Methods We use an efficient color normalization process based on ranklet transformation to automatically correct the intensity of the images. Additionally, we use spatial probability to segment the tissue structure regions for different tissue recognition patterns. Based on the segmentation, we incorporate a multidimensional structure into DenseNet to determine if a particular prostatic region is benign or malignant. Results As demonstrated by the experimental results with a test set of 2,663 images from 32 whole‐slide prostate histopathology images, our proposed system achieved 0.726, 0.6306, and 0.5209 in the average of the Dice coefficient, Jaccard similarity coefficient, and Boundary F1 score measures, respectively. Then, the accuracy, sensitivity, specificity, and the area under the ROC curve (AUC) of the proposed classification method were observed to be 95.0% (2544/2663), 96.7% (1210/1251), 93.9% (1334/1412), and 0.9831, respectively. Discussions We provide a detailed discussion on how our proposed system demonstrates considerable improvement compared with similar methods considered in previous researches as well as how it can be used for delineating malignant regions.
Background: Accurate and precise alignment of histopathology tissue sections is a key step for the interpretation of the proteome topology and cell level three-dimensional (3D) reconstruction of diseased tissues. However, the realization of an automated and robust method for aligning nonglobally stained immunohistochemical (IHC) sections is still challenging. In this study, we aim to assess the feasibility of multidimensional graph-based image registration on aligning serial-section and whole-slide IHC section images. Materials and Methods: An automated, patch graph-based registration method was established and applied to align serial, whole-slide IHC sections at ×10 magnification (average 32,947 × 27,054 pixels). The alignment began with the initial alignment of high-resolution reference and translated images (object segmentation and rigid registration) and nonlinear registration of low-resolution reference and translated images, followed by the multidimensional graph-based image registration of the segmented patches, and finally, the fusion of deformed patches for inspection. The performance of the proposed method was formulated and evaluated by the Hausdorff distance between continuous image slices. Results: Sets of average 315 patches from five serial whole slide, IHC section images were tested using 21 different IHC antibodies across five different tissue types (skin, breast, stomach, prostate, and soft tissue). The proposed method was successfully automated to align most of the images. The average Hausdorff distance was 48.93 μm with a standard deviation of 14.94 μm, showing a significant improvement from the previously published patch-based nonlinear image registration method (average Hausdorff distance of 93.89 μm with 50.85 μm standard deviation). Conclusions: Our method was effective in aligning whole-slide tissue sections at the cell-level resolution. Further advancements in the screening of the proteome topology and 3D tissue reconstruction could be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.