Echinoid is an immunoglobulin domain-containing transmembrane protein that modulates cell-cell signaling by Notch and the EGF receptors. We show that, in the Drosophila wing disc epithelium, Echinoid is a component of adherens junctions that cooperates with DE-Cadherin in cell adhesion. Echinoid and beta-catenin (a DE-Cadherin interacting protein) each possess a C-terminal PDZ domain binding motif that binds to Bazooka/PAR-3; these motifs redundantly position Bazooka to adherens junctions. Echinoid also links to actin filaments by binding to Canoe/AF-6/afadin. Moreover, interfaces between Echinoid- and Echinoid+ cells, like those between DE-Cadherin- and DE-Cadherin+ cells, are deficient in adherens junctions and form actin cables. These characteristics probably facilitate the strong sorting behavior of cells that lack either of these cell-adhesion molecules. Finally, cells lacking either Echinoid or DE-Cadherin accumulate a high density of the reciprocal protein, further suggesting that Echinoid and DE-Cadherin play similar and complementary roles in cell adhesion.
SUMMARYCell sorting involves the segregation of two cell populations into 'immiscible' adjacent tissues with smooth borders. Echinoid (Ed), a nectin ortholog, is an adherens junction protein in Drosophila, and cells mutant for ed sort out from the surrounding wild-type cells. However, it remains unknown which factors trigger cell sorting. Here, we dissect the sequence of this process and find that cell sorting occurs when differential expression of Ed triggers the assembly of actomyosin cable. Conversely, Ed-mediated cell sorting can be rescued by recruitment of Ed, via homophilic or heterophilic interactions, to the wild-type cell side of the clonal interface, even when differential Ed expression persists. We found, unexpectedly, that when actomyosin cable was largely absent, differential adhesion was sufficient to cause limited cell segregation but with a jagged tissue border (imperfect sorting). We propose that Ed-mediated cell sorting is driven both by differential Ed adhesion that induces cell segregation with a jagged border and by actomyosin cable assembly at the interface that smoothens this border.
SUMMARYPlanar cell polarity (PCP) refers to a second polarity axis orthogonal to the apicobasal axis in the plane of the epithelium. The molecular link between apicobasal polarity and PCP is largely unknown. During Drosophila eye development, differentiated photoreceptors form clusters that rotate independently of the surrounding interommatidial cells (ICs). Here, we demonstrate that both Echinoid (Ed), an adherens junction-associated cell adhesion molecule, and Flamingo (Fmi), a PCP determinant, are endocytosed via a clathrin-mediated pathway in ICs. Interestingly, we found that Ed binds the AP-2 adaptor and is required for the internalization of Fmi into ICs. Loss of ed led to increased amounts of Fmi on the cell membrane of non-rotating ICs and also to the misrotation of photoreceptor clusters. Importantly, overexpression of fmi in ICs alone was sufficient to cause misrotation of the adjacent photoreceptor clusters. Together, we propose that Ed, when internalized by AP-2, undergoes co-endocytosis with, and thereby decreases, Fmi levels on non-rotating ICs to permit correct rotation of ommatidial clusters. Thus, co-endocytosis of Ed and Fmi provides a link between apicobasal polarity and PCP.
BackgroundCAP/Capulet (Capt), Slingshot (Ssh) and Cofilin/Twinstar (Tsr) are actin-binding proteins that restrict actin polymerization. Previously, it was shown that low resolution analyses of loss-of-function mutations in capt, ssh and tsr all show ectopic F-actin accumulation in various Drosophila tissues. In contrast, RNAi depletion of capt, tsr and ssh in Drosophila S2 cells all affect actin-based lamella formation differently. Whether loss of these three related genes might cause the same effect in the same tissue remains unclear.MethodsLoss-of-function mutant clones were generated using the MARCM or EGUF system whereas overexpression clones were generated using the Flip-out system. Immunostaining were then performed in eye imaginal discs with clones. FRAP was performed in cultured eye discs.ResultsHere, we compared their loss-of-function phenotype at single-cell resolution, using a sheet of epithelial cells in the Drosophila eye imaginal disc as a model system. Surprisingly, we found that capt and ssh, but not tsr, mutant cells within and posterior to the morphogenetic furrow (MF) shared similar phenotypes. The capt/ssh mutant cells possessed: (1) hexagonal cell packing with discontinuous adherens junctions; and (2) largely complementary accumulation of excessive phosphorylated myosin light chain (p-MLC) and F-actin rings at the apical cortex. We further showed that the capt/ssh mutant phenotypes depended on the inactivation of protein kinase A (PKA) and activation of Rho.ConclusionsAlthough Capt, Ssh and Tsr were reported to negatively regulate actin polymerization, we found that Capt and Ssh, but not Tsr, share overlapping functions during eye morphogenesis.
dorsal closure is a morphogenetic movement that involves flanking epidermal cells, assembling actomyosin cables, and migrating dorsally over the underlying amnioserosa to seal at the dorsal midline. Echinoid (Ed)-a cell adhesion molecule of adherens junctions (AJs)-participates in several developmental processes. The disappearance of Ed from the amnioserosa is required to define the epidermal leading edge for actomyosin cable assembly and coordinated cell migration. However, the mechanism by which Ed is cleared from amnioserosa is unknown. Here, we show that Ed is cleared in amnioserosa by both transcriptional and post-translational mechanisms. First, mRNA transcription was repressed in amnioserosa prior to the onset of dorsal closure. Second, the ubiquitin ligase Smurf downregulated pretranslated Ed by binding to the PPXY motif of Ed. During dorsal closure, Smurf colocalized with Ed at AJs, and Smurf overexpression prematurely degraded Ed in the amnioserosa. Conversely, Ed persisted in the amnioserosa of mutant embryos, which, in turn, affected actomyosin cable formation. Together, our results demonstrate that transcriptional repression of followed by Smurf-mediated downregulation of pretranslated Ed in amnioserosa regulates the establishment of a taut leading edge during dorsal closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.